K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

tích rồi mình mới trả lời

7 tháng 8 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

∠ A = 180 °  - 2 α . Tam giác vuông HBC có BC = h/sinα. Kẻ đường cao AI của tam giác ABC thì được

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

9 tháng 6 2019

giúp vs ạ

SABC=SADB+SADCSABC=SADB+SADC

<=>bc.sinA=ADcsinA2+ADbsinA2bc.sinA=AD⋅c⋅sinA2+AD⋅b⋅sinA2

<=>bc.sinA=ADsinA2(b+c)bc.sinA=AD⋅sinA2(b+c)

<=>bc.sin2α=ADsinα(b+c)bc.sin2α=AD⋅sinα(b+c)

<=>2bc.sinα.cosα=ADsinα(b+c)2bc.sinα.cosα=AD⋅sinα(b+c)

<=>AD=2bccosαb+cAD=2bc⋅cosαb+c (dpcm)

a) Xét tam giác HAB và tam giác ABC có:

Góc AHB= góc BAC (= 900 )

B> là góc chung

 tam giác HAB ~ tam giác ABC (g.g)

b) Xét ΔΔ ABC vuông tại A: BC= AB2 + AC2
Hay BC2 = 122 + 162
BC2 = 144 + 256 = 400
=> BC = √400 = 20 (cm)
Ta có : Δ HAB  Δ ABC
=> HAAB=ABBCHAAB=ABBC
Hay HA12=1220HA12=1220
=> AH = 12.1220=7,212.1220=7,2 cm

c) 

Ta có

DE là tia phân giác của góc ADB trong tam giác DAB,

áp dụng t/c tia phân giác thìDADB=AEEBDADB=AEEB

DG là tia phân giác cảu góc CDA trong tam giác CDA.

áp dụng t/c tia phân giác thì CDDA=CFFACDDA=CFFA

VẬy EAEB.DBDC.FCFA=DADB.DBDC.CDDA=1EAEB.DBDC.FCFA=DADB.DBDC.CDDA=1(dpcm)

28 tháng 6 2021

A B D C

\(S_{ABC}=S_{ADB}+S_{ADC}\)

<=>\(bc.sinA=AD\cdot c\cdot sin\dfrac{A}{2}+AD\cdot b\cdot sin\dfrac{A}{2}\)

<=>\(bc.sinA=AD\cdot sin\dfrac{A}{2}\left(b+c\right)\)

<=>\(bc.sin2\alpha=AD\cdot sin\alpha\left(b+c\right)\)

<=>\(2bc.sin\alpha.cos\alpha=AD\cdot sin\alpha\left(b+c\right)\)

<=>\(AD=\dfrac{2bc\cdot cos\alpha}{b+c}\) (dpcm)

16 tháng 11 2018

a) EF là đường trung bình của tam giác ABH => EF//AB; EF=1/2AB (1)

  Có G là trung điểm của DC => GC//AB(DC//AB); GC=1/2AB(DC=AB) (2)

 Từ (1)$(2) => EF//GC; EF=GC => Tứ giác EFCG là hình bình hành.

b) Xét tam giác EBH và tam giác CBH có:BH là cạnh chung

                                                            EHB=CHB=90 (gt)

                                                            EH=EC(H là trung điểm của EC)

     Vậy tam giác EBH=tam giac CBH (cgv-cgv)

          =>BEH=BCH ; EBH=CBH

Lại có:BEH+EBH+BCH+CBH=180 =>BEH=EBH=BCH=CBH=180/4=45 (3)

Co BCE+ECG=BCG

Ma BCG=90(ABCD là hcn); BCE=45(cmt)

    => ECG=45

Xét tam giác EGC có:EGC+GEC+ECG=180

                          => EGC=180-(GEC+ECG)

                                     =180-(90+45)=45 (4)

Tu (3)$(4) => BEG=90

c)Tu CM