K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

Gọi G là trọng tâm của tam giác ABC, khi đó ta có:

GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)

GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2

=> ▲BGC vuông tại G hay BD vuông góc CE

29 tháng 9 2018

Gọi G là trọng tâm của tam giác ABC, khi đó ta có:

GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)

GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2

=> ▲BGC vuông tại G hay BD vuông góc CE

1 tháng 3 2019

cái này là toán lớp 7 nha mng, mk nhấp nhầm

1 tháng 3 2019

a) ad tính chất 3 đường trung tuyến đồng quy 

=> BG=2/3BD

=> BG=8

Và: CG=2/3CE

=> CG=6

AD pytago:

=> BC^2=BG^2+CG^2

(giải thích chỗ này nhá) do: BC^2=8^2+6^2

=> BC^2=100

=> BC =10

b) Cx ad PYTAGO: 

=> DE^2=EG^2+GD^2

=> DE^2=4^2+3^2

=> DE^2=25

=> DE=5

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:
Gọi $G$ là giao điểm của $BD,CE$ thì $G$ chính là trọng tâm tam giác $ABC$

Theo tính chất trọng tâm và trung tuyến:

\(BG=\frac{2}{3}BD=\frac{2}{3}.9=6\)

\(CG=\frac{2}{3}CE=\frac{2}{3}.12=8\)

\(\Rightarrow BG^2+CG^2=6^2+8^2=100=10^2=BC^2\)

Do đó theo định lý Pitago (đảo) thì tam giác $BGC$ vuông tại $G$

\(\Rightarrow \widehat{BGC}=90^0\Rightarrow BD\perp CE\)

b)

\(EG=CE-GC=12-8=4\)

\(DG=BD-BG=9-6=3\)

\(S_{GAB}=2S_{GEB}=2.\frac{EG.GB}{2}=4.6=24\) (cm vuông)

\(S_{AGC}=2S_{GDC}=2.\frac{GD.GC}{2}=3.8=24\) (cm vuông)

\(S_{GBC}=\frac{GB.GC}{2}=\frac{6.8}{2}=24\) (cm vuông)

\(\Rightarrow S_{ABC}=S_{GAB}+S_{GAC}+S_{GBC}=24+24+24=72\) (cm vuông)

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Hình vẽ:
Diện tích tam giác

5 tháng 5 2023

loading...    

a) Sửa đề: Chứng minh ∆ABC ∽ ∆EAC

Giải:

∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10 (cm)

Do AM là đường trung tuyến ứng với cạnh huyền BC

⇒ AM = BM = CM = BC : 2

= 10 : 2 = 5 (cm)

∆AMC có AM = CM = 5 (cm)

⇒ ∆AMC cân tại M

⇒ ∠MAC = ∠MCA (hai góc ở đáy)

Do MA ⊥ DE (gt)

CE ⊥ DE (gt)

⇒ MA // DE

⇒ ∠MAC = ∠ACE (so le trong)

Mà ∠MAC = ∠MCA (cmt)

⇒ ∠MAC = ∠ACE

⇒ ∠ACE = ∠BCA (do ∠MAC = ∠BAC)

Xét hai tam giác vuông:

∆ABC và ∆EAC có:

∠BCA = ∠ACE (cmt)

⇒ ∆ABC ∽ ∆EAC (g-g)

b) Do ∆ABC ∽ ∆EAC (cmt)

⇒ AC/CE = BC/AC

⇒ CE = AC²/BC

= 8²/10

= 6,4 (cm)

16 tháng 5 2020

ai giúp mình với