Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh EM=DM =1/2 BC(trong tam giác vuông đường trung tuyến ứng vs cạnh huyền bằng nửa cạnh huyền)
Theo giả thiết suy ra E là trung điểm của NC, D là trung điểm của MB
Do đó NE=EC; BD=DM
Xét tam giác AEN và tam giác BEC có:
\(\Delta AEN=\Delta BEC\left(c.g.c\right)\hept{\begin{cases}AE=BE\\EN=EC\\\widehat{AEN}=\widehat{BEC}\left(2gócđốiđỉnh\right)\end{cases}}\)
=> \(\hept{\begin{cases}AN=BC\\\widehat{EAN}=\widehat{EBC}\Rightarrow AN\left|\right|BC\end{cases}\left(1\right)}\)
Tương tự ta có: tam giác ADM= tam giác CAB (c.g.c)
=>\(\hept{\begin{cases}AM=CB\\\widehat{DAM}=\widehat{DCB}\Rightarrow AM\left|\right|BC\end{cases}\left(2\right)}\)
Từ (1) và (2) ta có: AN+AM=2BC và A,N,M thẳng hàng
Do đó: AM+AN=MN <=> MN=2BC hay BC=1/2(đpcm)
Hình bạn tự vẽ nha
Gọi G là điểm giao nhau giữa BD và CE
Xét tam giác BGC có: BG + GC >BC
Vì BD và CE là 2 đường trung tuyến của tam giác ABC
=> BG = 2/3 BD ; GC = 2/3 CE
Mà BG + GC = BC
=> 2/3 BD + 2/3 CE > BC
<=>. 2/3 * (BD+CE) > BC
<=> BD + CE > 3/2 BC (ĐPCM)
Vậy BD + CE > 3/2 BC
Dấu * là nhân nha bạn