K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng vơi ΔAEC

=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

c: \(DB=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(S_{BAC}=\dfrac{1}{2}\cdot4\cdot6=12\left(cm^2\right)\)

22 tháng 5 2021

B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB

             +)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )

                                                          BAC chung

                    Do đó: tg AEC ~ tg ADB ( gg)

         => AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)

     b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )

                        

22 tháng 5 2021

A B C 5 5 6 M N

a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )

\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)

\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm 

\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm

6 tháng 5 2018

a)  Xét \(\Delta ABD\)và   \(\Delta ACE\)có:

    \(\widehat{ADB}=\widehat{AEC}=90^0\)

    \(\widehat{BAC}\) chung

suy ra:   \(\Delta ABD~\Delta ACE\)  (g.g)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AD}{AE}\)

\(\Rightarrow\)\(AB.AE=AC.AD\) 

b)   \(\frac{AB}{AC}=\frac{AD}{AE}\) (câu a)

\(\Rightarrow\)\(\frac{AE}{AC}=\frac{AD}{AB}\)

Xét  \(\Delta AED\)và    \(\Delta ACB\)có:

     \(\frac{AE}{AC}=\frac{AD}{AB}\) (cmt)

     \(\widehat{EAD}\) chung

suy ra:   \(\Delta AED~\Delta ACB\)  (g.g)

c)  Kẻ  \(HK\perp BC\) \(\left(K\in BC\right)\)

C/m:    \(\Delta BKH~\Delta BDC\)(g.g)  \(\Rightarrow\) \(\frac{BK}{BD}=\frac{BH}{BC}\)\(\Rightarrow\)\(BH.BD=BK.BC\) (1)

           \(\Delta CKH~\Delta CEB\)(g.g)   \(\Rightarrow\)\(\frac{CK}{CE}=\frac{CH}{CB}\)\(\Rightarrow\)\(CE.CH=CK.BC\) (2)

Lấy (1) + (2) theo vế ta được:   \(BH.BD+CE.CH=BK.BC+CK.BC=BC^2\) (đpcm)

5 tháng 5 2021

Bài 1 :

a, Xét tam giác BDA và tam giác KDC có:     

 Góc BDA= Góc KDC(đối đỉnh)

 Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

b, 

Tam giác BDA đồng dạng với tam giác KDC ( cmt) => \(\frac{DB}{DA}=\frac{DK}{DC}\)

Xét tam giác DBK và tam giác DAC có:   

  Góc BDK= Góc DAC(đối đỉnh)

\(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

Bài 2 :

a) Xét tam giác ABH và tam giác AHD có:

\(\widehat{A}chung\)

\(\widehat{AHB}=\widehat{ADH}=90^o\)

 tam giác ABH đồng dạng với tam giác AHD (g-g)

b)T/tự: tam giác AHC đồng dạng với tam giác AEH (g-g)

⇒ \(\widehat{ACH}=\widehat{AHE}\) ( 2 góc tương ứng)

Tam giác AEH đồng dạng với tam giác HEC 

\(\widehat{ACH}=\widehat{AHE}\) (CM trên)

\(\widehat{AEH}=\widehat{HEC}\) (= 900)

\(\frac{AE}{HE}=\frac{EH}{EC}\)\(AE\cdot EC=EH\cdot EH=EH^2\)

c) tam giác ADC đồng dạng với tam giác ABE (g-g) vì:

\(\widehat{A}\) chung

\(\widehat{ADC}=\widehat{AEB}=90^O\)

 \(\widehat{ACD}=\widehat{ABE}\) ( 2 góc tương ứng)

Xét tam giác DBM và tam giác ECM có:

\(\widehat{ACD}=\widehat{ABE}\) (CM trên)

\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)

 tam giác DBM đồng dạng với tam giác ECM (g-g)

 Bài 3 :

Bạn tự vẽ hình rồi đối chiếu kq nhé, có thể có sai sót đấy, ko chắc đúng hết đâu

30 tháng 4 2021

#muon roi ma sao con

A B C D F E G

a, Xét tam giác BEF và tam giác DEA ta có : 

^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )

\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1) 

Vậy tam giác BEF ~ tam giác DEA ( c.g.c )

b, Xét tam giác EGD và tam giác EAB ta có : 

^GED = ^EAB ( đ.đ )

\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét )  (2) 

Vậy tam giác EGD ~ tam giác EAB ( c.g.c )

\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )

c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 ) 

Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)

30 tháng 4 2021

A B C D E F H 3 6

a, Xét tam giác AEB và tam giác AFC ta có 

^AEB = ^AEC = 900

^A _ chung 

Vậy tam giác AEB ~ tam giác AFC ( g.g )

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)

Bài 1:   Cho hình thang ABCD (AB//CD) ,một đường thẳng song song với 2 đáy, cắt các cạnh AD,BC ở M và N sao cho MD = 2MA.a.Tính tỉ số  NB/NCb.Cho AB = 8cm, CD = 17cm.Tính MN?Bài 2: Cho hình thang ABCD(AB//CD).M là trung điểm của CD.Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC.a.Chứng minh IK // ABb.Đường thẳng IK cắt AD, BC theo thứ tự ở E và F.Chứng minh: EI = IK = KF.Bài 3: Cho tam giác nhọn...
Đọc tiếp

Bài 1:   Cho hình thang ABCD (AB//CD) ,một đường thẳng song song với 2 đáy, cắt các cạnh AD,BC ở M và N sao cho MD = 2MA.

a.Tính tỉ số  NB/NC

b.Cho AB = 8cm, CD = 17cm.Tính MN?

Bài 2: Cho hình thang ABCD(AB//CD).M là trung điểm của CD.Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC.

a.Chứng minh IK // AB

b.Đường thẳng IK cắt AD, BC theo thứ tự ở E và F.Chứng minh: EI = IK = KF.

Bài 3: Cho tam giác nhọn ABC và các đường cao BD, CE, AM cắt nhau tại H.

a,Chứng minh:  ΔABD = ΔACE

b, Chứng minh: ΔAED ~ ΔACB và tính góc AED biết góc ACB = 48°

c, EH.EC=EA.EB

d, Chứng minh H là giao điểm ba đường phân giác của tam giác EDM

Bài 4:  Cho tam giác ABC vuông ở A, đường cao AH, BC = 20cm, AH = 8cm. Gọi D là hình chiếu của H trên AC, E là hình chiếu của H trên AB.

a.) Chứng minh : AB2 = BH . BC

b) Chứng minh tam giác ADE đồng dạng với tam giác ABC.

c) Tính diện tích tam giác ADE

Bài 5: Cho tam giác ABC vuông ở A, AB = 15cm, AC = 20cm, đường phân giác BD; đường cao AH.  Tính độ dài  BC ;  BH  ;  AH  ; AD?

0
1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và...
Đọc tiếp

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.

2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang

3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.

4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=5 cm. tính CD

5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=3cm. tính độ dài các cạnh BC,CD.

6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.

a) chứng minh ằng HD=KC.

7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.

a) tú giác BEDC là hình gì?Vì sao?

b)Chứng minh BE=ED=DC.

c) biết góc A=500. Tính các góc của tứ giác BEDC.

8. cho tam giác đều ABC, hai đường cao BN,CM

a) chứng minh tứ giác BMNC là hình thang cân

b) Tính chu vi của hình thang BMNC là hình thang cân

3
7 tháng 6 2015

dài thế bạn nản luôn oi

7 tháng 6 2015

làm đc câu ào thì đc đâu nhất thiết phải làm hết chỉ là mik đưa mấy bài đóa để mấy bn chỉ đc bài nào thì chỉ thôi mà