K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/8=CD/12

=>BD/2=CD/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{BD}{2}=\dfrac{CD}{3}=\dfrac{BD+CD}{2+3}=\dfrac{10}{5}=2\)

Do đó:BD=4(cm)

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC có AE là phân giác

nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)

=>\(\dfrac{BE}{6}=\dfrac{CE}{8}\)

=>\(\dfrac{BE}{3}=\dfrac{CE}{4}\)

mà BE+CE=BC=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{10}{7}\)

=>\(BE=\dfrac{10}{7}\cdot3=\dfrac{30}{7}\left(cm\right);CE=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\left(cm\right)\)

14 tháng 10 2019

35/13 cm

29 tháng 3 2018

Áp dụng định lý Pi-ta-go, ta có:

\(BD^2=AB^2+AD^2=6^2+8^2=100\)

=> BD = 10 (cm)

AD là phân giác của góc A: 

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\)

\(\Rightarrow\frac{BD}{CD}=\frac{6}{8}=\frac{3}{4}\)

\(\Rightarrow\frac{BD}{3}=\frac{CD}{4}\)

Mà: \(BD+CD=10\Rightarrow\frac{BD}{3}=\frac{CD}{4}=\frac{\left(BD+DB\right)}{7}=\frac{10}{7}\)

\(\Rightarrow BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\)

\(\Rightarrow CD=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\)

23 tháng 3 2020

Cho hình vẽ bên: Biết BD CE AB AC  a) Chứng minh AD AE AB AC  b) Cho biết AD=2cm, BD=1cm và AC 4cm  . Tính EC. 

10 tháng 12 2023

a: Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{12}=\dfrac{CD}{14}\)

=>\(\dfrac{AD}{6}=\dfrac{CD}{7}\)

mà AD+CD=AC=9cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{7}=\dfrac{AD+CD}{6+7}=\dfrac{9}{13}\)

=>\(AD=\dfrac{9}{13}\cdot6=\dfrac{54}{13}\left(cm\right);CD=\dfrac{9}{13}\cdot7=\dfrac{63}{13}\left(cm\right)\)

b: Sửa đề: b) Tính tỉ số diện tích của tam giác ABD và tam giác BDC

Vì \(\dfrac{AD}{6}=\dfrac{CD}{7}\)

nên \(\dfrac{AD}{CD}=\dfrac{6}{7}\)

=>\(\dfrac{S_{ABD}}{S_{CBD}}=\dfrac{6}{7}\)

=>\(S_{ABD}=\dfrac{6}{7}\cdot S_{CBD}\)

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

=>BD=60/7cm