K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
8 tháng 4 2022
a: Xét ΔBID và ΔBIC có
BI chung
\(\widehat{IBD}=\widehat{IBC}\)
BD=BC
Do đó: ΔBID=ΔBIC
b: Xét ΔBEC và ΔBED có
BE chung
\(\widehat{EBC}=\widehat{EBD}\)
BC=BD
Do đó: ΔBEC=ΔBED
Suy ra: EC=ED
MD
14 tháng 12 2017
a xét tam giác bid va bic có bI chung ; góc dbI =góc Ibc; bc =bc(tam giác dbc can tai b)
suy ra tam giác bid = tam giác bic (C g C)
b vì bi là phân giác suy ra DB : Dc =DI : Ic mà DB =DC suy DI =Ic hai tam giác DEI va tam giác Cei bằng nhau (c g c) suy ra ed =ec
c ei là đường trung trực của dc suy ra ei vuong góc với dc mà ah vuông góc dc suy ra hai đoạn song song
d góc bcd =(180 -70) :2 =55 suy ra góc dah =90 -55 =35
https://h.vn/hoi-dap/question/165435.html
THAM KHẢO NHA
# mui #
A I B C D H E 1 2 Hình ảnh vẫn chỉ mang tính chất minh họa
a) +) Xét \(\Delta\)BID và \(\Delta\)BIC có
BI : cạnh chung
\(\widehat{B_1}=\widehat{B}_2\) ( gt)
BD = BC ( gt)
=> \(\Delta\)BID = \(\Delta\)BIC (c-g-c)
b) +) Xét \(\Delta\)BEC và \(\Delta\) BED có
BE: cạnh chung
\(\widehat{B_1}=\widehat{B}_2\) ( gt)
BC = BD ( gt)
=> \(\Delta\)BEC = \(\Delta\)BED (c-g-c)
=> EC = ED ( 2 cạnh tương ứng )
c) Theo câu a ta có \(\Delta\)BID = \(\Delta\)BIC
=> \(\widehat{BID}=\widehat{BIC}\) ( 2 góc tương ứng ) (1)
+)Mà \(\widehat{BID}+\widehat{BIC}=180^o\) (2) ( 2 góc kề bù )
Từ (1) và (2) => \(\widehat{BID}=\widehat{BIC}=\frac{180^o}{2}=90^o\)
+) Lại có BI cắt CD tại I ( gt)
=> BI \(\perp\) CD tại I
+) Mặt khác ta có
\(\hept{\begin{cases}BI\perp CD\left(cmt\right)\\AH\perp CD\left(gt\right)\end{cases}}\)
=> BI // AH ( đpcm)
d) Ta có \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}\)
Mà \(\widehat{ABC}=70^o\) ( gt)
=> \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}=\frac{70^o}{2}=35^o\)
+)Theo câu c ta có BI // AH
=> \(\widehat{HAD}=\widehat{B_1}=35^o\) ( 2 góc so le trong )
+) Xét \(\Delta\)BIC vuông tại I
\(\Rightarrow\widehat{B_2}+\widehat{BCD}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{BCD}+35^o=90^o\)
\(\Rightarrow\widehat{BCD}=55^o\)
Vậy \(\widehat{DAH}=35^o;\widehat{BCD}=55^o\)
Xong rồi nha ___ mỏi hết cả tay rồi
Chúc bạn tui học tốt
Takiagawa Miu_