Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)
Có: AB=AC(gt)
Góc ABH = góc ACH(gt)
=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)
=>HB=HC (2 cạnh tương ứng)
=>Góc CAH = góc BAH( 2 góc tương ứng)
b/ Ta có :HB=HC( cmt)
=> H trung điểm BC
Ta có: HB=HC=BC/2=8/2=4 (cm)
Xét tam giác ABH vuông tại H
Có AB^2= AH^2+HB^2 (pytago)
=>AH^2= AB^2-HB^2
AH^2= 5^2-4^2
AH^2=25-16
AH^2=9
AH= căng 9
=> AH= 3cm
Vậy AH=3cm
c/ Xét tam giác ADH( góc D=90 độ) và tam giác AEH ( góc E = 90 độ)
Có: AH chung
Góc DAH= góc EAH ( tam giác ABH= tam giác ACH)
=> tam giác ADH= tam giác AEH ( cạnh huyền - góc nhọn)
=> AD=AE ( 2 cạnh tương ứng)
=> Tam giác ADE cân tại A ( 2 cạnh bên bằng nhau)
Xét tam giác ABC cân tại A(gt)
Có: Góc B= (180 độ - góc A)/2 (định lí)
Xét tam giác ADE cân tại A (cmt)
Có: Góc D= (180 độ - góc A)/2 (định lí)
=> Góc B= Góc D ( =(180 độ - góc A)/2)
=> DE//BC ( 2 góc đồng vị bằng nhau)
Bạn vẽ hình nhé, hình dễ mà
a) Vì tam giác ABC cân tại A
=> AH vừa là đường cao vừa là đường trung tuyến (đồng thời cũng là phân giác) (1)
=> HB = HC
b) (cái phần trong ngoặc của câu a là để làm câu b)
Từ (1) ở a
=> Góc BAH = góc CAH
tự vẽ hình nha :
xét tam giác ABH và tam giác ACH có:
AB=AC
góc ABH= góc ACH
góc AHB= góc AHC
=>tam giác abh = tam giác ach(ch-gn)
=>hb=hc=>bah=Cah
có hb=hc =bc/2=8/2=4
xét tam giác abh
ab^2=bh^2+Ah^2
=>ah^2=9=>ah=3
c)xét tam giác bdh vg tai d
tam giác ceh vg tại e
bh=hc cm trên
góc b=góc c
=> tam giác dbh =tam giác ech
=>db=ec
=>ad=ae=.. tam giác ade cân
tam giác abc cân tại a
tam giác ade cân tại a góc a chung =>góc ade= góc aed=góc b =bóc c
vì aed=góc c=>de//bc đồng vị
hình bạn tự vẽ
a/ xét 2 tam giác vuông ABH và ACH,có:
AB=AC(gt),AH chung =>tam giác vuông ABH=tam giác vuông ACH
=>HB=HC(t/ứng)
b/ Vì tam giác vuông BAH=tam giác vuông ACH(cmt) =>\(\widehat{BAH}\)=\(\widehat{CAH}\)(t/ứng)
tuong tu ta co\(\widehat{CAH}=\widehat{ABH}\)
nốt tiếp đoạn sau nha bạn
ta có \(\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=90^0\)
mà \(\widehat{AHC}=\widehat{ACH}+\widehat{CAH}=90^0\)
=>\(\widehat{ACH}=\widehat{BAH}\)
TƯƠNG TỰ TA CÓ: