K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

Lời giải:

Từ \(xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)=(a,b,c)\Rightarrow a+b+c=1\)

Bài toán tương đương với việc chứng minh:

\(\frac{c^3}{(a+1)(b+1)}+\frac{a^3}{(b+1)(c+1)}+\frac{b^3}{(a+1)(c+1)}\geq \frac{1}{16}\)

Thật vậy, áp dụng BĐT AM-GM ta có:

\(\frac{c^3}{(a+1)(b+1)}+\frac{a+1}{64}+\frac{b+1}{64}\geq 3\sqrt[3]{\frac{c^3}{64^2}}=\frac{3c}{16}\)

Tương tự:

\(\frac{a^3}{(b+1)(c+1)}+\frac{b+1}{64}+\frac{c+1}{64}\geq \frac{3a}{16}\)

\(\frac{b^3}{(c+1)(a+1)}+\frac{c+1}{64}+\frac{a+1}{64}\geq \frac{3c}{16}\)

Cộng các BĐT thu được ở trên:

\(\Rightarrow \text{VT}+\frac{(a+b+c)+3}{32}\geq \frac{3}{16}(a+b+c)\)

\(\Leftrightarrow \text{VT}+\frac{1}{8}\geq \frac{3}{16}\Rightarrow \text{VT}\geq \frac{1}{16}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Từ \(xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \((a,b,c)=\left(\frac{1}{x}; \frac{1}{y}; \frac{1}{z}\right)\Rightarrow a+b+c=1\)

BĐT cần chứng minh trở thành:

\(P=\frac{c^3}{(a+1)(b+1)}+\frac{a^3}{(b+1)(c+1)}+\frac{b^3}{(c+1)(a+1)}\geq \frac{1}{16}(*)\)

Thật vậy, áp dụng BĐT Cauchy ta có:

\(\frac{c^3}{(a+1)(b+1)}+\frac{a+1}{64}+\frac{b+1}{64}\geq 3\sqrt[3]{\frac{c^3}{64^2}}=\frac{3c}{16}\)

\(\frac{a^3}{(b+1)(c+1)}+\frac{b+1}{64}+\frac{c+1}{64}\geq 3\sqrt[3]{\frac{a^3}{64^2}}=\frac{3a}{16}\)

\(\frac{b^3}{(c+1)(a+1)}+\frac{c+1}{64}+\frac{a+1}{64}\geq 3\sqrt[3]{\frac{b^3}{64^2}}=\frac{3b}{16}\)

Cộng theo vế các BĐT trên và rút gọn :

\(\Rightarrow P+\frac{a+b+c+3}{32}\geq \frac{3(a+b+c)}{16}\)

\(\Leftrightarrow P+\frac{4}{32}\geq \frac{3}{16}\Leftrightarrow P\geq \frac{1}{16}\)

Vậy \((*)\) được chứng minh. Bài toán hoàn tất.

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)

12 tháng 10 2017

2) \(\sum\dfrac{x}{x^2-yz+2013}=\sum\dfrac{x^2}{x^3-xyz+2013x}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\dfrac{1}{x+y+z}\left(đpcm\right)\)

5 tháng 12 2018

Còn câu 1 nữa ạ, ai giải giúp em vớii

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)

Hoàn toàn tương tự với các phân thức còn lại suy ra:

\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
28 tháng 2 2019

Lời giải:

Ta xét hiệu sau:

\(x^3+y^3-xy(x+y)=x^3-x^2y-(xy^2-y^3)\)

\(=x^2(x-y)-y^2(x-y)=(x^2-y^2)(x-y)=(x-y)^2(x+y)\geq 0, \forall x,y>0\)

\(\Rightarrow x^3+y^3\geq xy(x+y)(*)\)

\(\Rightarrow x^3+y^3+xy\geq xy(x+y+1)\)

\(\Rightarrow \frac{xy}{x^3+y^3+xy}\leq \frac{xy}{xy(x+y+1)}=\frac{1}{x+y+1}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế, suy ra:

\(\text{VT}\leq \underbrace{\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}}_{M}(1)\)

Vì $xyz=1$ nên tồn tại $a,b,c>0$ sao cho \((x,y,z)=(\frac{a^2}{bc}, \frac{b^2}{ac}, \frac{c^2}{ab})\)

Khi đó:

\(M=\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\)

\(\leq \frac{abc}{ab(a+b)+abc}+\frac{abc}{bc(b+c)+abc}+\frac{abc}{ca(c+a)+abc}\) (áp dụng công thức $(*)$)

hay \(M\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=\frac{a+b+c}{a+b+c}=1(2)\)

Từ \((1);(2)\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$

28 tháng 2 2019

Bài của chị Akai đoạn đầu hơi phức tạp(em nghĩ thế).

Ta có:

\(\left(x-y\right)^2\ge0\) với \(\forall x,y\)

\(\Rightarrow x^2+y^2-xy\ge0\) với \(\forall x,y\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)với\(\forall x,y\)

\(\Rightarrow x^3+y^3\ge xy\left(x+y\right)\) với \(\forall x,y\)

Rồi giải tiếp như chị ấy.

AH
Akai Haruma
Giáo viên
27 tháng 11 2018

Lời giải:
Đặt \((\frac{1}{x}; \frac{1}{y}; \frac{1}{z})=(a,b,c)\). Bài toán trở thành:

Cho $a,b,c>0$ thỏa mãn $a+b+c=1$. CMR:

\(\frac{\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}}{\sqrt{abc}}\geq \sqrt{\frac{1}{abc}}+\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}(*)\)

----------------------------------

Do $a+b+c=1$ nên ta có:

\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}=\sqrt{a(a+b+c)+bc}+\sqrt{b(a+b+c)}+\sqrt{c(a+b+c)+ab}\)

\(=\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}+\sqrt{(c+a)(c+b)}\)

Mà áp dụng BĐT Bunhiacopxky:

\(\sqrt{(a+b)(a+c)}+\sqrt{(b+c)(b+a)}+\sqrt{(c+a)(c+b)}\geq \sqrt{(a+\sqrt{bc})^2}+\sqrt{(b+\sqrt{ac})^2}+\sqrt{(c+\sqrt{ab})^2}\)

\(=a+\sqrt{bc}+b+\sqrt{ac}+c+\sqrt{ab}=a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

\(1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

Vậy:\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\geq 1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

\(\Rightarrow \frac{\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}}{\sqrt{abc}}\geq \sqrt{\frac{1}{abc}}+\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\)

$(*)$ được cm. BĐT hoàn thành. Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$ hay $x=y=z=3$

26 tháng 11 2018

@Akai Haruma

NV
26 tháng 11 2018

\(\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\dfrac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\dfrac{\sqrt{3xy}}{xy}=\dfrac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\ge\dfrac{\sqrt{3}}{\sqrt{yz}};\dfrac{\sqrt{1+x^3+z^3}}{xz}\ge\dfrac{\sqrt{3}}{\sqrt{xz}}\)

\(\Rightarrow VT\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\ge\sqrt{3}.\dfrac{3}{\sqrt[3]{xyz}}=3\sqrt{3}\)

Dấu "=" xảy ra khi x=y=z=1

AH
Akai Haruma
Giáo viên
25 tháng 1 2018

Lời giải:

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+xz=xyz\)

\(\Rightarrow x^2+xy+yz+xz=x^2+xyz=x(x+yz)\)

\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+xz}{x}=\frac{(x+y)(x+z)}{x}\)

\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\)

Áp dụng BĐT Bunhiacopxky:\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)

\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}\)

Hoàn toàn tương tự:

\(\sqrt{y+xz}\geq \frac{y+\sqrt{xz}}{\sqrt{y}}\); \(\sqrt{z+xy}\geq \frac{z+\sqrt{xy}}{\sqrt{z}}\)

Cộng theo vế các BĐT đã thu được ta có:

\(\text{VT}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{xz}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)

\(\Leftrightarrow \text{VT}\geq \sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}=\text{VP}\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z=3\)

16 tháng 11 2018

\(A=\Sigma\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\Sigma\dfrac{\sqrt{3\sqrt[3]{1.x^3.y^3}}}{xy}\) (bđt Cô-si cho 3 số)

=> \(A\ge\Sigma\dfrac{\sqrt{3xy}}{xy}=\Sigma\dfrac{\sqrt{3}}{\sqrt{xy}}\ge3\sqrt[3]{\dfrac{\sqrt{3}}{\sqrt{xy}}.\dfrac{\sqrt{3}}{\sqrt{yz}}.\dfrac{\sqrt{3}}{\sqrt{zx}}}=3\sqrt{3}\) (bđt Cô-si cho 3 số)

Dấu "=" xảy ra <=> x = y = z = 1

16 tháng 11 2018

không hỉu cho lắm :(

tại sao lại chỉ xét 1 cái mí vâỵ :v