Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta chứng minh: \(B=\left(\sqrt{3}+\sqrt{2}\right)^{2n}+\left(\sqrt{3}-\sqrt{2}\right)^{2n}=\left(5+2\sqrt{6}\right)^n+\left(5-2\sqrt{6}\right)^n\) là số nguyên với mọi n
Với \(n=0\Rightarrow B=2\)
Với \(n=1\Rightarrow B=10\)
Giả sử nó đúng đến \(n=k\) hay
\(\hept{\begin{cases}\left(5+2\sqrt{6}\right)^{k-1}+\left(5-2\sqrt{6}\right)^{k-1}=a\\\left(5+2\sqrt{6}\right)^k+\left(5-2\sqrt{6}\right)^k=b\end{cases}}\) \(\left(a,b\in Z\right)\)
Ta chứng minh nó đúng đến \(n=k+1\)
Ta có: \(\left(5+2\sqrt{6}\right)^{k+1}+\left(5-2\sqrt{6}\right)^{k+1}\)
\(=\left(5+2\sqrt{6}\right)\left(b-\left(5-2\sqrt{6}\right)^k\right)+\left(5-2\sqrt{6}\right)\left(b-\left(5+2\sqrt{6}\right)^k\right)\)
\(=b\left(5+2\sqrt{6}\right)-\left(5-2\sqrt{6}\right)^{k-1}+b\left(5-2\sqrt{6}\right)-\left(5+2\sqrt{6}\right)^{k-1}\)
\(=10b-a\)
Vậy ta có điều phải chứng minh
b/ Đặt \(S_n=\left(5+2\sqrt{6}\right)^n+\left(5-2\sqrt{6}\right)^n=x^n+y^n\)
Ta có: \(\hept{\begin{cases}x^2=10x-1\\y^2=10y-1\end{cases}}\)
\(\Rightarrow S_{n+2}=x^{n+2}+y^{n+2}=10\left(a^{n+1}+b^{n+1}\right)-\left(a^n+b^n\right)=10S_{n+1}-S_n\)
\(\Rightarrow S_{n+2}+S_n=10S_{n+1}⋮10\)
Tương tự cũng có: \(S_{n+4}+S_{n+2}=10S_{n+3}⋮10\)
\(\Rightarrow S_{n+4}-S_n⋮10\)
Từ đây ta thấy được \(S_{n+4}\equiv S_n\left(mod10\right)\)
Mà \(S_0=2\)
Vậy với mọi n chia hết cho 4 thì số tận cùng của B là 2.
Quay lại bài toán ta thấy \(1004⋮4\) nên M sẽ có chữ số tận cùng là 2.
Bạn thêm điều kiện x,y,z lớn hơn 0 nhé :)
Từ giả thiết ta suy ra : \(a^2=b+4032\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4032\)
\(\Rightarrow xy+yz+zx=2016\)thay vào :
\(x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}\)
\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+y\right)\left(z+x\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=x\left|y+z\right|=xy+xz\)vì x,y,z > 0
Tương tự : \(y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{2016+y^2}}=xy+zy\)
\(z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{2016+z^2}}=zx+zy\)
Suy ra \(P=2\left(xy+yz+zx\right)=2.2016=4032\)
Bài 1:
Ta thấy: \(y^2=5^x+12^x\equiv 5^x\equiv (-1)^x\pmod 3\)
Nếu $x$ lẻ suy ra \(y^2\equiv (-1)^x\equiv -1\equiv 2\pmod 3\)
Điều này vô lý do một số chính phương chia $3$ chỉ có thể dư $0,1$
Do đó $x$ chẵn. Đặt \(x=2k\)
\(\Rightarrow 5^{2k}+12^{2k}=y^2\)
\(\Leftrightarrow (y-12^k)(y+12^k)=5^{2k}\)
Khi đó tồn tại $m,n\in\mathbb{N}$ sao cho:
\(\left\{\begin{matrix} y-12^k=5^m\\ y+12^k=5^n\end{matrix}\right.(m+n=2k)\)
\(\Rightarrow 2.12^k=5^n-5^m\)
Vì \(2.12^k\not\vdots 5\Rightarrow 5^n-5^m\not\vdots 5\). Do đó bắt buộc một trong hai số $m,n$ bằng $0$
Vì cả hai đều là số tự nhiên mà $m< n$ nên $m=0$
Do đó: \(2.12^k=5^n-1=5^{2k}-1=25^k-1(*)\)
Nếu \(k=0\) thì vô lý
Nếu \(k=1\Rightarrow x=2\Rightarrow y=13\) (thỏa mãn)
Nếu \(k\geq 2\) : \(25^k-1=(24+1)^k-1>24^k=2^k.12^k>2.12^k\) (trái với $(*)$)
Vậy \((x,y)=(2,13)\)
Bài 2:
Đặt \(\left\{\begin{matrix} 2+\sqrt{3}=a\\ 2-\sqrt{3}=b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} ab=1\\ a+b=4\end{matrix}\right.\)
Ta sẽ chứng minh \(a^n+b^n\) luôn chẵn với mọi \(n\in\mathbb{N}\) bằng quy nạp
Thật vậy:
\(n=0\Rightarrow a^n+b^n=2\) chẵn
\(n=1\Rightarrow a^n+b^n=a+b=4\) chẵn
....
Giả sử điều ta nhận định đúng đến \(n=k\) .
Ta chứng minh nó cũng đúng với \(n=k+1\)
Thật vậy:
\(a^{k+1}+b^{k+1}=(a^k+b^k)(a+b)-a^kb-ab^k\)
\(=4(a^k+b^k)-ab(a^{k-1}+b^{k-1})\)
\(=4(a^k+b^k)-(a^{k-1}+b^{k-1})\)
Vì nhận định đúng đến $n=k$ nên \(a^{k-1}+b^{k-1}\) chẵn
\(\Rightarrow a^{k+1}+b^{k+1}=4(a^k+b^k)-(a^{k-1}+b^{k-1})\) chẵn
Ta có đpcm
Thay \(n=2016\) thì từ kết quả vừa chứng minh suy ra \((2+\sqrt{3})^{2016}+(2-\sqrt{3})^{2016}=a^{2016}+b^{2016}\) chẵn
\(\Leftrightarrow\)A=\(\left|x-2010\right|+\left|x-2011\right|\)=\(\left|x-2010\right|+\left|2011-x\right|\)\(\ge\)\(\left|x-2010+2011-x\right|\)=1
Dấu ''='' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2010\ge0\\2011-x\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge2010\\x\le2011\end{cases}}\)\(\Leftrightarrow\)\(2010\le x\le2011\)
Vậy Min A =1 \(\Leftrightarrow2010\le x\le2011\)