\(\hept{\begin{cases}a^2=b+4032\\x+y+z=a\\x^2+y^2+z^2=b\end{cases}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

Bạn thêm điều kiện x,y,z lớn hơn 0 nhé :)

Từ giả thiết ta suy ra : \(a^2=b+4032\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4032\)

\(\Rightarrow xy+yz+zx=2016\)thay vào :

\(x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}\)

\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+y\right)\left(z+x\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=x\left|y+z\right|=xy+xz\)vì x,y,z > 0

Tương tự : \(y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{2016+y^2}}=xy+zy\)

\(z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{2016+z^2}}=zx+zy\)

Suy ra \(P=2\left(xy+yz+zx\right)=2.2016=4032\)

22 tháng 6 2016

nhận liên hợp ta có  \(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)

mà theo đề bài ta có \(\left(\sqrt{x^2+1}+x\right)\left(y+\sqrt{y^2+1}\right)=1\)

==> \(\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\)

tương tự ta có \(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\)

trừ từng vế 2 pt trên ta có 2x=-2y <=>x=-y

đến đây ok rùi nhé bạn 

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\) 2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\) b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr:...
Đọc tiếp

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương

b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\)

2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\)

b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr: \(\left(1+\frac{a^3}{\left(b+1\right)^3}\right)\left(1+\frac{b^3}{\left(b+1\right)^3}\right)\le9\)

c) \(x,y>0;\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2020\). Min P = x + y

d) \(x,y,z>0;\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\). Min \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

e) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z+4xyz=4\end{matrix}\right.\) Cmr: \(\left(1+xy+\frac{y}{z}\right)\left(1+yz+\frac{z}{x}\right)\left(1+zx+\frac{x}{y}\right)\ge27\)

f) \(\left\{{}\begin{matrix}x,y,z\ge1\\3x^2+4y^2+5z^2=52\end{matrix}\right.\). Min P = x + y + z

g) \(x,y>0\). Min \(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)

6
23 tháng 2 2020

?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương

giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!

NV
23 tháng 2 2020

Tranh thủ làm 1, 2 bài rồi ăn cơm:

1/ Đặt \(m=n-2008>0\)

\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương

\(\Rightarrow369+2^m\) là số chính phương

m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương

\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)

b/

\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)

\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)

\(\Rightarrow x=y=4\)

14 tháng 11 2017

Đặt \(\sqrt{x}=x;\sqrt{y}=y;\sqrt{z}=z\) cho dễ nhìn.

\(\Rightarrow\hept{\begin{cases}x+y+z=2\\x^2+y^2+z^2=2\end{cases}}\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=4\)

\(\Leftrightarrow xy+yz+zx=1\)

Ta có:

\(x\left(1+y^2\right)\left(1+z^2\right)+y\left(1+z^2\right)\left(1+x^2\right)+z\left(1+x^2\right)\left(1+y^2\right)\)

\(=x^2y^2z+y^2z^2x+z^2x^2y+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+x+y+z\)

\(=xyz\left(xy+yz+zx\right)+x^2\left(2-x\right)+y^2\left(2-y\right)+z^2\left(2-z\right)+2\)

\(=-2xyz+2\left(x^2+y^2+z^2\right)-\left(x^3+y^3+z^3-3xyz\right)+2\)

\(=-2xyz+6-\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=-2xyz+6-2=-2xyz+4\)

Ta lại có:

\(\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)=x^2y^2z^2+x^2y^2+y^2z^2+z^2x^2+x^2+y^2+z^2+1\)

\(=x^2y^2z^2+\left(xy+yz+zx\right)^2-2xyz\left(xy+yz+zx\right)+3\)

\(=x^2y^2z^2-2xyz+4=\left(xyz-2\right)^2\)

\(\Rightarrow A=\sqrt{\left(xyz-2\right)^2}.\frac{4-2xyz}{\left(xyz-2\right)^2}\)

Tới đây bí :((

14 tháng 11 2017

thanks nha, z là ok rồi

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số