\(M=\frac{2a+1}{3-a}\)với a là số nguyên

a) Với giá trị nào của a thì M là 1 p...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

a) M là phân số khi \(3-a\ne0\Rightarrow a\ne3\)

b) Mlà số nguyên khi 2a+1 chia hết ch 3-a mà 2a+1 chia 3-a dư 7 nên muốn 2a+1 chia hết cho 7 thì 3-a phải là ước của 7.

Ta có ước của 7 là s=(-1;1;-7;7)

Ta xét các trường hợp:

trường hợp 1: \(-a+3=-1\Rightarrow-a=-4\Rightarrow a=4;\)

trường hợp 2: \(-a+3=1\Rightarrow-a=-2\Rightarrow a=2;\)

trường hợp 3: \(-a+3=-7\Rightarrow-a=-10\Rightarrow a=10;\)

trường hợp 4: \(-a+3=7\Rightarrow-a=4\Rightarrow a=-4;\)

vậy với a=(-4;2;4;10) thì M là 1 số nguyên.

26 tháng 4 2017

                                                                         Giải                                                                                                                    \(A=\frac{a^3+2a^2-1}{a^3+2a^22a+1}\)                                                                                                                                                           \(A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)                                                                                                      \(A=\frac{a^2\left(a+1\right)\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)                                                                                                                         \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2 +a+1\right)}\)                                                                                                                                             \(A=\frac{a^2+a-1}{a^2+a+1}\)                                                                                                                                                                  b, Gọi d là ƯCLN \(\left(a^2+a-1;a^2+a+1\right)\)                                                                                                                   \(\Rightarrow\)\(a^2+a-1⋮d\)                                                                                                                                                                     \(a^2+a+1⋮d\)                                                                                                                                                               \(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)⋮d\)                                                                                                                            \(\Rightarrow2⋮d\)                                                                                                                                                                                     \(\Rightarrow d=1\) hoặc d=2                                                                                                                                                              Nhận xét : \(a^2+a-1=a\left(a+1\right)-1\)                                                                                                                         Với số nguyên a ta có :a(a+1) là tích 2 số nguyên liên tiếp \(\Rightarrow a\left(a+1\right)⋮2\)                                                                                \(\Rightarrow a\left(a+1\right)-1\) lẻ \(\Rightarrow a^2+a-1\) lẻ                                                                                                                        \(\Rightarrow\) d không thể bằng 2                                                                                                                                                           Vậy d=1 (đpcm)

15 tháng 11 2023

Vũ™©®×÷|

14 tháng 8 2019

1) a) Để x > 0

=> \(2a-5< 0\)

\(\Rightarrow2a< 5\)

\(\Rightarrow a< 2,5\)

\(\text{Vậy }x>0\Leftrightarrow a< 2,5\)

b) Để x < 0

\(\Rightarrow2a-5>0\)

\(\Rightarrow2a>5\)

\(\Rightarrow a>2,5\)

\(\text{Vậy }x< 0\Leftrightarrow a>2,5\)

c) Để x = 0

\(\Rightarrow2a-5=0\)

\(\Rightarrow2a=5\)

\(\Rightarrow a=2,5\)

\(\text{Vậy }x=0\Leftrightarrow a=2,5\)

2) \(\text{Vì }a\inℤ\Rightarrow3a-5\inℤ\)

\(\text{mà }x\inℤ\Leftrightarrow3a-5⋮4\)

\(\Rightarrow3a-5\in B\left(4\right)\)

\(\Rightarrow3a-5\in\left\{0;4;8;...\right\}\)

\(\Rightarrow3a\in\left\{5;9;13;....\right\}\)

\(\Rightarrow a\in\left\{\frac{5}{3};3;\frac{13}{3};6;....\right\}\)

\(\text{Mà }a\inℤ\Rightarrow a\in\left\{3;6;9;...\right\}\text{thì }x\inℤ\)

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

12 tháng 4 2018

* Ta có : 

\(P=\frac{3a-2017}{2a-1}+\frac{a+2018}{2a-1}\)

\(P=\frac{3a-2017+a+2018}{2a-1}\)

\(P=\frac{4a+1}{2a-1}=\frac{4a-2+3}{2a-1}=\frac{4a-2}{2a-1}+\frac{3}{2a-1}=\frac{2\left(2a-1\right)}{2a-1}+\frac{3}{2a-1}=2+\frac{3}{2a-1}\)

Để P là số nguyên thì \(\frac{3}{2a-1}\) phải là số nguyên hay \(3⋮\left(2a-1\right)\)\(\Rightarrow\)\(\left(2a-1\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(2a-1\)\(1\)\(-1\)\(3\)\(-3\)
\(a\)\(1\)\(0\)\(2\)\(-1\)

Vậy \(a\in\left\{-1;0;1;2\right\}\) thì P là số nguyên 

Chúc bạn học tốt ~ 

12 tháng 4 2018

\(P=\frac{3a-2017}{2a-1}+\frac{a+2018}{2a-1}\)

\(P=\frac{3a-2017+a+2018}{2a-1}\)

\(P=\frac{4a+1}{2a-1}\)

để \(P\in Z\) thì \(a\in Z\)