K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{4a^4}{4c^4}=\frac{5b^4}{5d^4}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{4a^4}{4b^4}=\frac{5b^4}{5d^4}=\frac{4a^4+5b^4}{4b^4+5d^4}\)

\(\frac{4a^4}{4b^4}=\frac{a^4}{b^4}\)

vì \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{a}{c}\cdot\frac{b}{d}\cdot\frac{a}{c}\cdot\frac{b}{d}=\frac{a^2}{c^2}\cdot\frac{b^2}{d^2}\)

\(\frac{a^4}{c^4}=\frac{a^2}{c^2}\cdot\frac{b^2}{d^2}=\frac{4a^4+5b^4}{4c^4+5d^4}\left(đpcm\right)\)

11 tháng 5 2019

Theo tính chất dãy tỉ số bằng nhau:

\(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{1}{2}\)

11 tháng 5 2019

ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

áp dụng tc của dãy tỉ số bằng nhau ta có:

 \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow x=\frac{1}{2}\)

Vậy ...

29 tháng 9 2016

có thể chứng minh mà ko phải đặt k ko

26 tháng 9 2016

viết đề ngu như chó

26 tháng 9 2016

cho mỗi CMR thì làm = niềm tin ak

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

6 tháng 7 2019

Tạm thời giải phần a đã nhé -_-

a, Từ a/b = c/d => a/c=b/d

Đặt a/c=b/d=k thì a=ck, b=dk

Xét : 4a-3b/4a+3b=4ck-3dk/4ck+3dk=k.(4c-3d)/k.(4c+3d)=4c-3d/4c+3d

=> 4a-3b/4a+3b=4c-3d/4c+3d => 4a-3b/4c-3d=4a+3b/4c+3d

Nhìn trên máy khó lắm viết lại theo lời giải ra nháp trc' cho dễ nhìn nhé @@

6 tháng 7 2019

\(a,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}\)\(\left(1\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4a+3d}\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(đpcm\right)\)

\(b\)Đặt \(\frac{a}{c}=\frac{b}{d}=k\)\(\Rightarrow a=ck;b=dk\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{\left(ck\right)^2-\left(dk\right)^2}{c^2-d^2}=\frac{c^2k^2-d^2k^2}{c^2-d^2}=\frac{k^2\left(c^2-d^2\right)}{c^2-d^2}=k^2\)\(\left(3\right)\)

Mà \(\frac{ab}{cd}=\frac{ck.dk}{cd}=k^2\)\(\left(4\right)\)

Từ ( 3 ) và ( 4 ) \(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(đpcm\right)\)

\(c,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(5\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(6\right)\)

TỪ ( 5 ) và ( 6 ) \(\Rightarrow\frac{a-b}{c-d}=\frac{2a+5b}{2c+5d}\left(đpcm\right)\)

5 tháng 2 2017

ta có:

\(\frac{7a-11b}{4a+5b}=\frac{7c-11d}{4c+5d}\)

\(\Rightarrow\frac{7a-11b}{7c-11d}=\frac{4a+5b}{4c+5d}\)

\(\Leftrightarrow\frac{7a}{7c}=\frac{11b}{11d}=\frac{4a}{4c}=\frac{5b}{5d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Mặt khác:

\(\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrowđpcm\)

5 tháng 2 2017

sai bn

18 tháng 11 2018

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{7a^2}{7c^2}=\frac{3b^2}{3d^2}=\frac{3ab}{3cd}=\frac{11a^2}{11c^2}=\frac{5b^2}{5d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{7a^2}{7c^2}=\frac{3b^2}{3d^2}=\frac{3ab}{3cd}=\frac{11a^2}{11c^2}=\frac{5b^2}{5d^2}=\frac{7a^2+3ab}{7b^2+3cd}=\frac{11a^2-5b^2}{11c^2-5d^2}\)

\(\Rightarrow\frac{7a^2+3ab}{11a^2-5b^2}=\frac{7c^2+3cd}{11c^2-5d^2}\)

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}\)

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\left(\frac{a+b}{c+d}\right)^4\)(1)

\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\)(2)

từ (1) và (2) => đpcm

c) áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\frac{a^2}{b^2}=\left(\frac{a+c}{b+d}\right)^2\)(1)

\(\frac{a^2}{b^2}=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)(2)

từ (1) và (2) => đpcm