K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Leftrightarrow\left(a+5\right).\left(b-6\right)=\left(a-5\right).\left(b+6\right)\)

\(\Rightarrow ab-6a+5b-30=ab+6a-5b-30\)

\(\Rightarrow-6a+5b=6a-5b\Rightarrow-6a+10b=6a\Rightarrow10b=12a\Rightarrow\frac{a}{b}=\frac{10}{12}=\frac{5}{6}\left(đpcm\right)\)

18 tháng 8 2016

\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Rightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(\Rightarrow ab-6a+5b-30=ab+6a-5b-30\)

\(\Rightarrow5b=6a\Leftrightarrow\frac{a}{b}=\frac{5}{6}\)

 (Đpcm)

18 tháng 8 2016

Từ \(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Rightarrow\frac{b-6}{a-5}=\frac{b+6}{a+5}\)

Áp dụng t/c dãy tỉ số bằng nhau : 

\(\frac{b-6}{a-5}=\frac{b+6}{a+5}=\frac{\left(b+6\right)-\left(b-6\right)}{\left(a+5\right)-\left(a-5\right)}=\frac{12}{10}=\frac{6}{5}\)

\(\Rightarrow5\left(b-6\right)=6\left(a-5\right)\Leftrightarrow5b=6a\Leftrightarrow\frac{a}{b}=\frac{5}{6}\)

8 tháng 10 2016

\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Rightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(\Rightarrow ab-6a+5b-30=ab+6a-5b-30\)

\(\Rightarrow5b=6a\)

\(\Rightarrow\frac{a}{b}=\frac{5}{6}\)

Đpcm

Bài 1: Tìm số hạng thứ 4 lập thành 1 tỉ lệ thức (TLT) với 3 số hạng sau: 4;25;100 Bài 2: Cho TLT \(\frac{3x+5y}{x-2y}=\frac{1}{4}.\)Tính tỉ số \(\frac{x}{y}\)  Bài 3: Cho TLT \(\frac{a-3}{a+3}=\frac{b-6}{b+6}\)   với a \(\ne\) 3; b  \(\ne\)–6. CMR: \(\frac{a}{b}=\frac{1}{2}\)Bài 4: Các số a,b,c phải có thêm điều kiện gì để có TLT:  \(\frac{a}{b}=\frac{a+c}{b+c}\)với b \(\ne\)0; b + c \(\ne\)0.Bài 5: Cho...
Đọc tiếp

Bài 1: Tìm số hạng thứ 4 lập thành 1 tỉ lệ thức (TLT) với 3 số hạng sau: 4;25;100 

Bài 2: Cho TLT \(\frac{3x+5y}{x-2y}=\frac{1}{4}.\)Tính tỉ số \(\frac{x}{y}\)  

Bài 3: Cho TLT \(\frac{a-3}{a+3}=\frac{b-6}{b+6}\)   với a \(\ne\) 3; b  \(\ne\)–6. CMR: \(\frac{a}{b}=\frac{1}{2}\)

Bài 4: Các số a,b,c phải có thêm điều kiện gì để có TLT: 

 \(\frac{a}{b}=\frac{a+c}{b+c}\)với b \(\ne\)0; b + c \(\ne\)0.

Bài 5: Cho TLT \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)  với a,b,c \(\ne\)0; a \(\ne\)c. CMR: \(\frac{ab}{bc}=\frac{b}{c}\)

Bài 6: Tìm các số x,y,z biết:

a, \(\frac{x}{y}=\frac{8}{11};\frac{y}{z}=\frac{11}{7}\)   và x + y - 10z = – 102

b, 9x = 5y = 15z và –x + y - z = 11

c, \(\frac{3}{7}x=\frac{8}{13}y=\frac{6}{19}z\) và 2x - y - z = – 6

Bài 8: Cho TLT . Chứng minh:

a, \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)            b, \(\frac{a-b}{c-d}=\frac{2a-3b}{2c-3d}\)                     c, \(\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

2
11 tháng 10 2018

2. \(\frac{\left(3X+5Y\right)}{X-2Y}=\frac{1}{4}=>4\left(3X+5Y\right)=X-2Y\\ 12X+20Y=X-2Y\\ X-12X=2Y-20Y\\ -11X=-18Y\\ =>\frac{X}{Y}=-\frac{18}{-11}=\frac{18}{11}\)

11 tháng 10 2018

Bài 1. 4/25 = 100/x => x = 25.100/4 = 2500/4 = 625

Bài 3. (a-3)/(a+3) = (b-6)/(b+6)

=> (a-3)(b+6) = (a+3)(b-6)

=> ab + 6a -3b -18 = ab - 6a + 3b -18

=> 12a = 6b

=> a/b = 6/12 = 1/2

21 tháng 7 2016

Ta có : \(\frac{a+5}{b-5}\frac{b+6}{b-6}\)

=> \(\frac{a+5}{b+6}=\frac{a-5}{b-6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a+5}{b+6}=\frac{a-5}{b-6}=\frac{a+5+a-5}{b+6+b-6}=\frac{a+5-a+5}{b+5-b+5}\)

\(\frac{2a}{2b}=\frac{5.2}{6.2}=\frac{10}{12}\)

=> \(\frac{a}{b}=\frac{5}{6}\left(\text{đ}pcm\right)\)

 

21 tháng 7 2016

Từ

\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Rightarrow\frac{b-6}{a-5}=\frac{b+6}{a-5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau . Ta có

\(\frac{b-6}{a-5}=\frac{b+6}{a+5}=\frac{b-6+b+6}{a-5+a+5}=\frac{2b}{2b}=\frac{b}{a}=\frac{b+6-b}{a+5-a}=\frac{6}{5}\)

\(\Rightarrow\frac{a}{b}=\frac{5}{6}\) (đpcm)