Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\\ \Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\\ \Rightarrow a=b=c=d\)
Vậy
\(M=\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\\ =\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\\ =\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}\\ =\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\\ =\frac{1+1+1+1}{2}\\ =\frac{4}{2}=2\)
Vậy M=2
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Leftrightarrow\)\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Leftrightarrow\)\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
+) Xét \(a+b+c+d=0\)
Suy ra :
\(a+b=-\left(c+d\right)\)
\(b+c=-\left(d+a\right)\)
\(c+a=-\left(b+d\right)\)
\(d+a=-\left(b+c\right)\)
Do đó : \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{c+b}\)
\(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)
\(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(M=-4\)
+) Xét \(a+b+c+d\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=4\)
Do đó :
\(\frac{a+b+c+d}{a}=4\)\(\Leftrightarrow\)\(a+b+c+d=4a\) \(\left(1\right)\)
\(\frac{a+b+c+d}{b}=4\)\(\Leftrightarrow\)\(a+b+c+d=4b\) \(\left(2\right)\)
\(\frac{a+b+c+d}{c}=4\)\(\Leftrightarrow\)\(a+b+c+d=4c\) \(\left(3\right)\)
\(\frac{a+b+c+d}{d}=4\)\(\Leftrightarrow\)\(a+b+c+d=4d\) \(\left(4\right)\)
Từ (1), (2), (3) và (4) suy ra \(4a=4b=4c=4d\) \(\left(=a+b+c+d\right)\)
\(\Leftrightarrow\)\(a=b=c=d\)
\(\Rightarrow\)\(M=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)
\(\Rightarrow\)\(M=1+1+1+1=4\)
Vậy \(M=-4\) hoặc \(M=4\)
Chúc bạn học tốt ~
Ta có :
\(2a+2b+2c=by+cz+ax+cz+ax+by\)
\(\Leftrightarrow\)\(2\left(a+b+c\right)=2\left(ax+by+cz\right)\)
\(\Leftrightarrow\)\(a+b+c=ax+by+cz\)
+) \(a+b+c=ax+\left(by+cz\right)=ax+2a=a\left(x+2\right)\)
\(\Rightarrow\)\(\frac{1}{x+2}=\frac{a}{a+b+c}\) \(\left(1\right)\)
+) \(a+b+c=by+\left(ax+cz\right)=by+2b=b\left(y+2\right)\)
\(\Rightarrow\)\(\frac{1}{y+2}=\frac{b}{a+b+c}\) \(\left(2\right)\)
+) \(a+b+c=cz+\left(ax+by\right)=cz+2c=c\left(z+2\right)\)
\(\Rightarrow\)\(\frac{1}{z+2}=\frac{c}{a+b+c}\) \(\left(3\right)\)
Từ (1), (2) và (3) suy ra \(M=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(M=\frac{a+b+c}{a+b+c}=1\)
Vậy \(M=1\)
Chúc bạn học tốt ~
Cộng thêm 1 vào mỗi đẳng thức, ta được:
\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)
\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
Vì các tử số của mỗi tỉ số bằng nhau nên các mẫu số của mỗi tỉ số cũng bằng nhau
\(\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{a+d}{b+c}=1+1+1+1=4\)
Ta có:\(\frac{3a+b+c+d}{a}=\frac{a+3b+c+d}{b}=\frac{a+b+3c+d}{c}=\frac{a+b+c+3d}{d}\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)
\(TH1:a+b+c+d=0\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{cases}}\)
\(\Rightarrow Q=\left(\frac{-\left(c+d\right)}{c+d}\right)^2+\left(\frac{-\left(a+d\right)}{a+d}\right)^2+\left(\frac{c+d}{-\left(c+d\right)}\right)^2+\left(\frac{a+d}{-\left(a+d\right)}\right)^2\)
\(\Rightarrow Q=\left(-1\right)^2\cdot4=1\cdot4=4\)
\(TH2:a=b=c=d\)
\(\Rightarrow Q=\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2=1^2\cdot4=1\cdot4=4\)
Vậy Q=4
Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé
Bài 1:
a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)
Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
CM : a = b = c
Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
vì \(a+b+c\ne0\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)
Do đó : \(a=b=c\).
Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)
Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)
\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)