\(f\left(x\right)=x^3+bx^2+cx+d\). Biết \(f\left(x\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2024

Thực hiện các phép chia đa thức, thu được:

\(f\left(x\right)=\left(x+3\right)\left[x^2+\left(b-3\right)x+\left(c-3b+9\right)\right]+d-3c+9b-27\)

\(f\left(x\right)=\left(x-4\right)\left[x^2+\left(b+4\right)x+c+4b+16\right]+d+4c+16b+64\)

\(f\left(x\right)=\left(x+3\right)\left(x-4\right)\left(x+b+1\right)+\left(c+b+13\right)x+d+12b+12c\)

Theo đề bài, ta có \(d-3c+9b-27=1\)      (1)

\(d+4c+16b+64=8\)       (2)

\(b+1=-3\) \(\Leftrightarrow b=-4\)

và \(\left(b+c+13\right)x+d+12b+12c\ne0\)        (3)

Thế \(b=-4\) vào (1) và (2), thu được

\(d-3c-36-27=1\Leftrightarrow d-3c=64\)

và \(d+4c-64+64=8\) \(\Leftrightarrow d+4c=8\)

Từ đó suy ra \(\left(c;d\right)=\left(-8;40\right)\)

Thử lại, thấy thỏa mãn.

Do đó, \(\left(b,c,d\right)=\left(-4,-8,40\right)\)

27 tháng 10 2022

\(\dfrac{A\left(x\right)}{x-2}=\dfrac{20x^3-40x^2+40x^2-80x+69x-138+2152}{x-2}\)

\(=20x^2+40x+69+\dfrac{2152}{x-2}\)

\(\dfrac{B\left(x\right)}{x-3}=\dfrac{20x^3-11x+2010}{x-3}\)

\(=\dfrac{20x^3-60x^2+60x^2-180x+169x-507+2517}{x-3}\)

\(=20x^2+60x+169+\dfrac{2517}{x-3}\)

b/a=2517/2152=1 dư 365

13 tháng 7 2019

Ta có hpt:\(\left\{{}\begin{matrix}a+b+c=-16\\4a+2b+c=-23\\9a+3b+c=-36\end{matrix}\right.\)

\(\Rightarrow a=-3;b=2;c=-15\). Vậy Q(x)=\(x^3-3x^2+2x-15\)

Theo đlí Bezu số dư Q(x) cho (x-4)=f(4)=\(4^3-3.4^2+2.4-15=9\)

còn 2 bài nữa bạn giải giúp mk luôn dc ko

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

Lời giải:

a)

\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)

\(f(0)=0^2=0\)

\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)

b)

\(2f(a)=g(a)\)

\(\Leftrightarrow 2a^2=3-a\)

\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)

\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)

NV
21 tháng 9 2019

Bạn vào đây xem thử

Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến