K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow \left\{\begin{matrix} a=b\\ b=c\\ c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Khi đó: \(\frac{a^{2017}+b^{2017}}{c^{2017}}=\frac{a^{2017}+a^{2017}}{a^{2017}}=2\)

19 tháng 11 2017

con cảm ơn cô

11 tháng 10 2017

Đặt:\(\dfrac{a}{b}=\dfrac{c}{d}=@\Leftrightarrow\left\{{}\begin{matrix}a=b@\\c=d@\end{matrix}\right.\)

khi đó: \(\dfrac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\dfrac{b^{2017}@^{2017}+b^{2017}}{d^{2017}@^{2017}+d^{2017}}=\dfrac{b^{2017}\left(@^{2017}+1\right)}{d^{2017}\left(@^{2017}+1\right)}=\dfrac{b^{2017}}{d^{2017}}\)

\(\dfrac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}=\dfrac{\left(b@-b\right)^{2017}}{\left(d@-d\right)^{2017}}=\dfrac{\left[b\left(@-1\right)\right]^{2017}}{\left[d\left(@-1\right)\right]^{2017}}=\dfrac{b^{2017}}{d^{2017}}\)

Ta có điều phải chứng minh

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\dfrac{b^{2017}\cdot k^{2017}+d^{2017}\cdot k^{2017}}{b^{2017}+d^{2017}}=k^{2017}\)

\(\dfrac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}=\dfrac{\left(bk+dk\right)^{2017}}{\left(b+d\right)^{2017}}=k^{2017}\)

Do đó: \(\dfrac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\dfrac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}\)

17 tháng 8 2017

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c+a-c}{b+d+b-d}=\dfrac{2a}{2b}=\dfrac{a}{b}\left(1\right)\)

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c-a+c}{b+d-b+d}=\dfrac{2c}{2d}=\dfrac{c}{d}\left(1\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\)

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Thay vào tính

20 tháng 8 2017

tks bn rất nhìu nha

17 tháng 8 2017

Từ gt => (a+c)(b-d)=(b+d)(a-c)

nên ab+bc-ad-cd=ab+ad-bc-cd   =>   2bc=2ad     => bc=ad

=> \(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a^{2017}}{b^{2017}}=\frac{c^{2017}}{d^{2017}}=\frac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}\)(theo t/c dãy tỉ số bằng nhau)

7 tháng 4 2017

\(a+b+c=2017\Rightarrow A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-b}+\dfrac{c}{a+b+c-a}\)

\(A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow A< 2\left(1\right)\)

\(A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow A>1\left(2\right)\)

từ (1) và (2) \(\Rightarrow1< A< 2\)

vay A \(\notin Z\)

25 tháng 8 2017

b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{2a}{2b}=\dfrac{2c}{2d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\Rightarrow\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\dfrac{\left(bk\right)^{2017}-\left(dk\right)^{2017}}{b^{2017}-d^{2017}}=\dfrac{b^{2017}k^{2017}-d^{2017}k^{2017}}{b^{2017}-k^{2017}}=\dfrac{k^{2017}\left(b^{2017}-d^{2017}\right)}{b^{2017}-d^{2017}}=k^{2017}\left(1\right)\)

\(k=\dfrac{a}{b}\Rightarrow k^{2017}=\left(\dfrac{a}{b}\right)^{2017}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\left(\dfrac{a}{b}\right)^{2017}\)