K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

Theo bài ra, ta có: \(B=\dfrac{2018}{1}+\dfrac{2017}{2}+\dfrac{2016}{3}+...+\dfrac{1}{2018}\)

\(B=\left(\dfrac{2018}{1}+1\right)+\left(\dfrac{2017}{2}+1\right)+\left(\dfrac{2016}{3}+1\right)+...+\left(\dfrac{1}{2018}+1\right)-2018\)

\(B=2019+\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}-2018\)

\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+\left(2019-2018\right)\)

\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+1\)

\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+\dfrac{2019}{2019}\)

\(B=2019\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}\right)\)

Khi đó:\(\dfrac{B}{A}=\dfrac{2019\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}}\)

\(\Rightarrow\dfrac{B}{A}=2019\), là 1 số nguyên.

Vậy \(\dfrac{B}{A}\) là số nguyên.

10 tháng 2 2018

b) Tìm min

\(SV=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)

\(SV=\left|x-2016\right|+\left|2018-x\right|+\left|x-2017\right|\)

\(SV\ge\left|x-2016+2018-x\right|+\left|x-2017\right|=2+\left|x-2017\right|\ge2\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}2016\le x\le2018\\x=2017\end{matrix}\right.\Leftrightarrow x=2017\)

3) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=676\)

\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=676\)

\(\Rightarrow\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a}=673\)

10 tháng 2 2018

Mong mn giúp đỡ mikyeu

Cảm ơn mn

3 tháng 5 2018

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

25 tháng 12 2017

a, \(5\dfrac{4}{13}.15\dfrac{3}{41}-5\dfrac{4}{13}.2\dfrac{3}{41}\)

\(=\left(15\dfrac{3}{41}-2\dfrac{3}{41}\right).\dfrac{69}{13}=\dfrac{13.69}{13}=69\)

b, \(\dfrac{2^3}{3^3}:\dfrac{16}{27}+\dfrac{2017}{2018}-\dfrac{1}{2}.2017^0\)

\(=\dfrac{8}{27}:\dfrac{16}{27}+\dfrac{2017}{2018}-\dfrac{1}{2}.1=\dfrac{1}{2}+\dfrac{2017}{2018}-\dfrac{1}{2}=\dfrac{2017}{2018}\)

c, \(3:\left(-\dfrac{3}{2}\right)^2+\dfrac{1}{9}.\sqrt{36}=3:\dfrac{9}{4}+\dfrac{1}{9}.6=\dfrac{4}{3}+\dfrac{2}{3}=\dfrac{6}{3}=2\)

25 tháng 12 2017

a,

\(5\dfrac{4}{13}.14\dfrac{3}{41}-5\dfrac{4}{13}.2\dfrac{3}{41}=5\dfrac{4}{13}.\left(14\dfrac{3}{41}-2\dfrac{3}{41}\right)\)

=\(5\dfrac{4}{13}.13\)

=\(\dfrac{69}{13}.13\)

=69

14 tháng 4 2017

10a=10^2017+10/10^2017+1
10b=10^2018+10/10^2018+1

cậu tự so sánh nhé vậy là dễ rồi


14 tháng 4 2017

Ta có: \(A=\dfrac{10^{2016}+1}{10^{2017}+1}\Rightarrow10A=\dfrac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\dfrac{10^{2017}+10}{10^{2017}+1}\)

\(=\dfrac{10^{2017}+1+9}{10^{2017}+1}=\dfrac{10^{2017}+1}{10^{2017}+1}+\dfrac{9}{10^{2017}+1}=1+\dfrac{9}{10^{2017}+1}\)

Tương tự ta cũng có: \(10B=1+\dfrac{9}{10^{2018}+1}\)

Lại có: \(10^{2017}< 10^{2018}\Rightarrow10^{2017}+1< 10^{2018}+1\)

\(\Rightarrow\dfrac{1}{10^{2017}+1}>\dfrac{1}{10^{2018}+1}\Rightarrow\dfrac{9}{10^{2017}+1}>\dfrac{9}{10^{2018}+1}\)

\(\Rightarrow1+\dfrac{9}{10^{2017}+1}>1+\dfrac{9}{10^{2018}+1}\Rightarrow10A>10B\Rightarrow A>B\)

15 tháng 8 2017

a) Ta có:

\(\left|x-2017\right|\ge0\) với \(\forall x\)

\(\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu

Vậy \(x;y\in\varnothing\)

b) Ta có:

\(3.\left|x-y\right|^5\ge0\)

\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)

\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)

Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)

\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow \left\{\begin{matrix} a=b\\ b=c\\ c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Khi đó: \(\frac{a^{2017}+b^{2017}}{c^{2017}}=\frac{a^{2017}+a^{2017}}{a^{2017}}=2\)

19 tháng 11 2017

con cảm ơn cô

2 tháng 8 2018

xem lại đề nha

3 tháng 8 2018

đề bị sai lỗi chính tả kìa