Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất của dãy tỉ số bằng nha, ta có :
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=.....=\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)
\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)
\(\dfrac{a_2}{a_3}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)
.................................
\(\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)
\(\Rightarrow\left(\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\right)^n=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}........\dfrac{a_n}{a_{n+1}}\)
Vậy \(\left(\dfrac{a_1+a_2+......+a_n}{a_2+a_3+......+a_{n+1}}\right)=\dfrac{a_1}{a_{n+1}}\) (đpcm)
~ Học tốt ~
Ta có ;
\(\dfrac{a1}{a2}=\dfrac{a2}{a3}=.....=\dfrac{a2017}{a2018}=\dfrac{\left(a1\right)^{2017}}{\left(a2\right)^{2017}}\\ =\dfrac{a1\cdot a2\cdot a3\cdot...\cdot a2017}{a2\cdot a3\cdot a4\cdot...\cdot a2018}=\dfrac{a1}{a2018}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{a1}{a2}=\dfrac{a2}{a3}=.....=\dfrac{a2017}{a2018}=\dfrac{a1+a2+a3+...+a2017}{a2+a3+a4+...+a2018}\left(2\right)\)
Từ (1) và (2) ⇒ Đpcm
Lời giải:
Đặt \(t=\frac{a_1}{a_2}=\frac{a_2}{a_3}.....=\frac{a_{2008}}{a_1}\)
Theo tính chất dãy tỉ số bằng nhau:
\(t=\frac{a_1+a_2+....+a_{2008}}{a_2+2_3+...+a_{2008}+a_1}=\frac{a_1+a_2+...+a_{2008}}{a_1+a_2+...+a_{2008}}=1\)
Do đó:
\(\left\{\begin{matrix} a_1=a_2\\ a_2=a_3\\ .....\\ a_{2007}=a_{2008}\\ a_{2008}=a_1\end{matrix}\right.\) \(\Leftrightarrow a_1=a_2=....=a_{2007}=a_{2008}=k\)
Khi đó:
\(N=\frac{a_1^2+a_2^2+...+a^2_{2007}+a^2_{2008}}{(a_1+a_2+...+a_{2008})^2}=\frac{\underbrace{k^2+k^2+....+k^2}_{2008}}{\underbrace{(k+k+....+k)^2}_{2008}}\)
\(\Leftrightarrow N=\frac{2008k^2}{(2008k)^2}=\frac{1}{2008}\)
Vậy \(N=\frac{1}{2008}\)
\(\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=...=\dfrac{x_n}{a_n}=\dfrac{x_1+x_2+...+x_{n-1}+x_n}{a_1+a_2+...+a_{n-1}+a_n}\)
\(=\dfrac{c}{a_1+a_2+...+a_n}\)
Suy ra:
\(x_1=\dfrac{a_1.c}{a_1+a_2+...+a_n}\)
\(x_2=\dfrac{a_2.c}{a_1+a_2+...+a_n}\)
.........................................
\(x_n=\dfrac{a_n.c}{a_1+a_2+...+a_n}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=....=\dfrac{a_{2000}}{a_{2001}}=\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\)
\(\Rightarrow\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}......\dfrac{a_{2000}}{a_{2001}}=\left(\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\right)^{2000}\)
\(\Rightarrow\dfrac{a_1}{a_{2001}}=\left(\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\right)^{2000}\)(đpcm)
Bài 1:
a) \(\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)......\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\)
= \(\dfrac{-8}{9}.\dfrac{-9}{10}.......\dfrac{-2003}{2004}.\dfrac{-2004}{2005}\) = \(\dfrac{-8}{2005}\)
b) \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\) = \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\)
= \(-2+\dfrac{1}{-2+\dfrac{1}{-1}}\) = \(-2+\dfrac{1}{-3}\) = \(\dfrac{-7}{3}\)
\(\text{Câu 1 : }\) Tính
\(\text{a) }\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\\ =\left(1-\dfrac{9}{9}\right)\left(\dfrac{1}{10}-\dfrac{10}{10}\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-\dfrac{2005}{2005}\right)\\ =\dfrac{-8}{9}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-2003}{2004}\cdot\dfrac{-2004}{2005}\\ =\dfrac{\left(-8\right)\cdot\left(-9\right)\cdot..\cdot\left(-2003\right)\cdot\left(-2004\right)}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8\cdot9\cdot...\cdot2003\cdot2004}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8}{2005}\)
\(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-1}}\\ =-2+\dfrac{1}{-3}\\ =-2+\dfrac{-1}{3}=-\dfrac{7}{3}\)