K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

ok

12 tháng 7 2017

2, a-b=ab => a=ab+b => a=b(a+1)

thay a=b(a+1) vào a:b ta có: => b:b(a+1)=a+1

Theo bài ra ta có: a:b=a-b

=> a+1=a-b

=>-b=1

=> b=-1

Thay b=-1 vào a-b=ab ta có : a-(-1)=-a

=> a +1=-a

=>a=-1/2

Vậy a=-1/2. b=-1

10 tháng 4 2017

Ta có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\)

\(=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)(1)

Lại có:

\(B\)\(=\dfrac{2013}{51}+\dfrac{2013}{52}+...+\dfrac{2013}{100}\)

\(=2013\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\right)\)(2)

Từ (1),(2)\(\Rightarrow\dfrac{B}{A}=2013\)

\(\Rightarrow\dfrac{B}{A}\) là số nguyên

17 tháng 12 2017

Ta có:

A\(=\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+....+\dfrac{1}{99\cdot100}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...\dfrac{1}{99}-\dfrac{1}{100}\)

=\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}...\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}...\dfrac{1}{100}\right)\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-2\cdot\left(\dfrac{1}{2}+\dfrac{1}{4}...+\dfrac{1}{100}\right)\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\)

=\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)

Và:

B=\(\dfrac{2013}{51}+\dfrac{2013}{52}+...+\dfrac{2013}{100}\)

=\(2013\cdot\left(\dfrac{1}{51}+\dfrac{1}{52}+...\dfrac{1}{100}\right)\)

\(\Rightarrow\dfrac{B}{A}=2013\)

Vậy\(\dfrac{B}{A}\)là một số nguyên

24 tháng 7 2017

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+..+\dfrac{1}{9900}\)

\(A=\left(\dfrac{1}{2}+\dfrac{1}{12}\right)+\left(\dfrac{1}{30}+...+\dfrac{1}{9900}\right)\)

\(A>\dfrac{1}{2}+\dfrac{1}{12}\Rightarrow A>\dfrac{7}{12}\left(1\right)\)

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{5}{6}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< \dfrac{5}{6}\left(2\right)\)

\(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)

24 tháng 7 2017

Ta có :

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..........+\dfrac{1}{99.100}\)

\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+............+\dfrac{1}{99.100}>\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{7}{12}\)

\(\Leftrightarrow A>\dfrac{1}{12}\)\(\left(1\right)\)

Lại có :

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...........+\dfrac{1}{99.100}\)

\(\Leftrightarrow A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-.........-\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)

\(\Leftrightarrow A< \dfrac{5}{6}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)

26 tháng 7 2017

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

26 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)

2 tháng 8 2017

Câu hỏi của Phương Uyên - Toán lớp 7 | Học trực tuyến

5 tháng 7 2018

Ta có: \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(\Rightarrow A>\dfrac{1}{1.2}+\dfrac{1}{3.4}=\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{14}{24}=\dfrac{7}{12}\)\(\left(1\right)\)

Lại có: \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-\left(\dfrac{1}{6}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)\(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\)

Vậy \(\dfrac{7}{12}< A< \dfrac{5}{6}\) ( Điều phải chứng minh ).

5 tháng 7 2018

Ta có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ A=\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}\right)+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ A=\dfrac{7}{12}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}>\dfrac{7}{12}\left(1\right)\\ \Rightarrow A>\dfrac{7}{12}\left(1\right)\)

Ta lại có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-...\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\\ A=\dfrac{5}{6}-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-...\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}< \dfrac{5}{6}\\ \Rightarrow A=< \dfrac{5}{6}\left(2\right)\)

Từ (1) và (2) suy ra: \(\dfrac{7}{12}< A< \dfrac{5}{6}\left(dpcm\right)\)