Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, a-b=ab => a=ab+b => a=b(a+1)
thay a=b(a+1) vào a:b ta có: => b:b(a+1)=a+1
Theo bài ra ta có: a:b=a-b
=> a+1=a-b
=>-b=1
=> b=-1
Thay b=-1 vào a-b=ab ta có : a-(-1)=-a
=> a +1=-a
=>a=-1/2
Vậy a=-1/2. b=-1
Ta có:
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)(1)
Lại có:
\(B\)\(=\dfrac{2013}{51}+\dfrac{2013}{52}+...+\dfrac{2013}{100}\)
\(=2013\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\right)\)(2)
Từ (1),(2)\(\Rightarrow\dfrac{B}{A}=2013\)
\(\Rightarrow\dfrac{B}{A}\) là số nguyên
Ta có:
A\(=\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+....+\dfrac{1}{99\cdot100}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}...\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}...\dfrac{1}{100}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-2\cdot\left(\dfrac{1}{2}+\dfrac{1}{4}...+\dfrac{1}{100}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\)
=\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
Và:
B=\(\dfrac{2013}{51}+\dfrac{2013}{52}+...+\dfrac{2013}{100}\)
=\(2013\cdot\left(\dfrac{1}{51}+\dfrac{1}{52}+...\dfrac{1}{100}\right)\)
\(\Rightarrow\dfrac{B}{A}=2013\)
Vậy\(\dfrac{B}{A}\)là một số nguyên
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+..+\dfrac{1}{9900}\)
\(A=\left(\dfrac{1}{2}+\dfrac{1}{12}\right)+\left(\dfrac{1}{30}+...+\dfrac{1}{9900}\right)\)
\(A>\dfrac{1}{2}+\dfrac{1}{12}\Rightarrow A>\dfrac{7}{12}\left(1\right)\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{5}{6}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< \dfrac{5}{6}\left(2\right)\)
\(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)
Ta có :
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..........+\dfrac{1}{99.100}\)
\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+............+\dfrac{1}{99.100}>\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{7}{12}\)
\(\Leftrightarrow A>\dfrac{1}{12}\)\(\left(1\right)\)
Lại có :
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...........+\dfrac{1}{99.100}\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-.........-\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Leftrightarrow A< \dfrac{5}{6}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)
a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)
\(\Rightarrowđpcm\)
d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)
\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)
\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)
\(\Rightarrowđpcm\)
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
\(\Rightarrowđpcm\)
Ta có: \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(\Rightarrow A>\dfrac{1}{1.2}+\dfrac{1}{3.4}=\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{14}{24}=\dfrac{7}{12}\)\(\left(1\right)\)
Lại có: \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-\left(\dfrac{1}{6}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)\(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\)
Vậy \(\dfrac{7}{12}< A< \dfrac{5}{6}\) ( Điều phải chứng minh ).
Ta có:
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ A=\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}\right)+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ A=\dfrac{7}{12}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}>\dfrac{7}{12}\left(1\right)\\ \Rightarrow A>\dfrac{7}{12}\left(1\right)\)
Ta lại có:
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-...\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\\ A=\dfrac{5}{6}-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-...\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}< \dfrac{5}{6}\\ \Rightarrow A=< \dfrac{5}{6}\left(2\right)\)
Từ (1) và (2) suy ra: \(\dfrac{7}{12}< A< \dfrac{5}{6}\left(dpcm\right)\)