Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
A B C E F H M K I
A. Ta có \(\frac{AH}{AC}=\frac{3}{5}\Rightarrow AC=\frac{5}{3}AH;BC=\frac{AB.AC}{AH}=\frac{AB.5AH}{3.AH}=\frac{5}{3}AB\)
Theo định lí Pitago ta có \(AB^2+AC^2=BC^2\Rightarrow15^2+\frac{25}{9}AH^2=\frac{25}{9}.15^2\Rightarrow AH^2=144\Rightarrow AH=12\left(cm\right)\)
\(\Rightarrow AC=\frac{5}{3}.12=20\Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
Theo hệ thức lượng trong tam giác vuông ta có \(BH=\frac{AB^2}{AC}=9;CH=\frac{AC^2}{BC}=16\left(cm\right)\)
b. Theo hệ thức lượng trong tam giác vuông ta có \(BE=\frac{BH^2}{AB}=5,4\left(cm\right);CF=\frac{CH^2}{AC}=12,8\left(cm\right)\)
Ta có \(AH^3=12^3=1728\)
\(BC.BE.CF=25.5,4.12,8=1728\)
Vậy \(AH^3=BC.BE.CF\)
c. Ta kẻ \(CK⊥BC\)tại M \(\Rightarrow\)yêu cầu bài toán \(\Leftrightarrow\)chứng minh M là trung điểm BC
Ta gọi I là giao điểm của AH và EF
Xét \(\Delta AKI\)và \(\Delta AHM\)
có \(\hept{\begin{cases}\widehat{K}=\widehat{H}=90^0\\\widehat{Achung}\end{cases}\Rightarrow\Delta AKI~\Delta AHM\left(g-g\right)}\)
\(\Rightarrow\widehat{AIF}=\widehat{AMB}\)
Ta chứng minh được \(AFHE\)là hình chữ nhật vì \(\widehat{F}=\widehat{A}=\widehat{E}=90^0\)
\(\Rightarrow\widehat{IAF}=\widehat{IFA}\)\(\Rightarrow\widehat{FMA}=180^0-2\widehat{MAF}\left(1\right)\)
Lại có \(\widehat{HBA}=\widehat{IAF}\Rightarrow\widehat{AMH}=180^0-2\widehat{HBA}\)
\(\Rightarrow\Delta AMB\)cân tại I \(\Rightarrow MA=MB\)
Tương tự chứng minh được \(MA=MC\)
Vậy M là trung điểm BC hay ta có đpcm
a: BC=9+16=25cm
AB=căn 9*25=15cm
AC=căn 16*25=20cm
b: Sửa đề: Kẻ HI vuông góc AB
AH=căn 9*16=12cm
AI=12^2/15=9,6cm
IB=15-9,6=5,4cm
c: KA=HI=12*9/15=108/15=7,2cm
KC=HC^2/AC=16^2/20=12,8cm
Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}\Rightarrow AH=4,8\left(cm\right)\).
\(BC^2=AB^2+AC^2\)(định lí Pythagore)
\(=6^2+8^2=100\)
\(\Rightarrow BC=10\left(cm\right)\)
\(HC=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\left(cm\right)\)
\(HB=BC-HC=10-6,4=3,6\left(cm\right)\)
Xét tam giác \(AHB\)vuông tại \(H\)đường cao \(HQ\):
\(AQ=\frac{AH^2}{AB}=\frac{4,8^2}{6}=3,84\left(cm\right)\)
Xét tam giác \(ACQ\)vuông tại \(A\):
\(CQ^2=AC^2+AQ^2=8^2+3,84^2\Rightarrow CQ=\frac{8\sqrt{769}}{25}\left(cm\right)\)