Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) . Xét\(\Delta ABE\) và \(\Delta ADE\) có:
BA = DA (gt)
Góc BAE = góc DAE ( gt)
AE cạnh chung
nên \(\Delta ADE\) = \(\Delta ABE\)( c-g-c)
b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)= \(^{180^o}\)
Suy ra : \(\widehat{AIB}\) = \(180^o\)- \(\widehat{ABI}-\widehat{BAI}\)
\(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)
Suy ra: \(\widehat{AID}\) = \(180^O\) - \(\widehat{ADI}\)-\(\widehat{IAD}\)
Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)
\(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)
\(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)
Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )
MÀ \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )
NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)
HAY \(AE\perp BD\)
có AB=AC suy ra tam giác ABC cân
mà AE là phân giác góc BAC suy ra AE là đg cao (tính chất)và cũng suy ra b)AE là đg trung trực của BC
xét 2 tam giác vuông ABE và ACE co\(\hept{\begin{cases}AB=AC\\AElàcanhchung\end{cases}}\)
suy ra 2 tam giác bằng nhau
Câu 1 :
A B E C
a) Xét \(\Delta ABC\) có :
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân)
Xét \(\Delta ABE;\Delta ACE\) có :
\(\widehat{BAE}=\widehat{CAE}\) (AE là tia phân giác của \(\widehat{BAC}\) )
\(AB=AC\left(cmt\right)\)
\(\widehat{ABE}=\widehat{ACE}\) (do \(\widehat{ABC}=\widehat{ACB}\)- cmt)
=> \(\Delta ABE=\Delta ACE\left(g.c.g\right)\)
b) Ta có : \(BE=EC\) (từ \(\Delta ABE=\Delta ACE\left(cmt\right)\))
=> AE là trung tuyến trong tam giác ABC
Xét \(\Delta ABC\) cân tại A (gt) có :
\(AE\) là tia phân giác của \(\widehat{BAC}\left(gt\right)\) đồng thời là trung tuyến (cmt)
Nên : AE là đường trung trục trong tam giác cân ABC (tính chất tam giác cân)
Suy ra : \(\left\{{}\begin{matrix}BE=EC\\AE\perp BC\end{matrix}\right.\)
Do đó : AE là trung trực của BC (đpcm)
a) Xét ΔABE và ΔADE có:
AE: chung
BAE=DAE(AE: pg BAC)
AB=AD(gt)
=>ΔABE=ΔADE(c.g.c)
=>đpcm
b) Từ cm(a)
=>EB=ED(2 cạnh tương ứng) (*)
=>AEB=AED
Mà AEB+AED=180o
=>2AEB=180o
=>AEB=90o
=>AE\(\perp\) BD (**)
Từ (*) và (**)
=>AE là trung trực BD(đpcm)