Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) . Xét\(\Delta ABE\) và \(\Delta ADE\) có:
BA = DA (gt)
Góc BAE = góc DAE ( gt)
AE cạnh chung
nên \(\Delta ADE\) = \(\Delta ABE\)( c-g-c)
b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)= \(^{180^o}\)
Suy ra : \(\widehat{AIB}\) = \(180^o\)- \(\widehat{ABI}-\widehat{BAI}\)
\(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)
Suy ra: \(\widehat{AID}\) = \(180^O\) - \(\widehat{ADI}\)-\(\widehat{IAD}\)
Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)
\(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)
\(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)
Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )
MÀ \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )
NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)
HAY \(AE\perp BD\)
A B C D E F
GT | △ABC: AB < AC. BAD = DAC = BAC/2 (D BC) E AC : AE = AB F AB : AF = AC |
KL | a, △ABD = △AED b, AD ⊥ FC c, △BDF = △EDC ; BF = EC d, F, D, E thẳng hàng |
Bài làm:
a, Xét △ABD và △AED
Có: AB = AE (gt)
BAD = DAE (gt)
AD là cạnh chung
=> △ABD = △AED (c.g.c)
b, Vì △ABD = △AED (cmt)
=> BD = ED (2 cạnh tương ứng)
=> D thuộc đường trung trực của BE (1)
Vì AB = AE (gt) => A thuộc đường trung trực của BE (2)
Từ (1) và (2) => AD là đường trung trực của BE
=> AD ⊥ FC
c, Vì △ABD = △AED (cmt)
=> ABD = AED (2 góc tương ứng)
Ta có: ABD + DBF = 180o (2 góc kề bù)
AED + DEC = 180o (2 góc kề bù)
Mà ABD = AED (cmt)
=> DBF = DEC
Lại có: AB + BF = AF
AE + EC = AC
Mà AB = AE (gt) ; AF = AC (gt)
=> BF = EC
Xét △BDF và △EDC
Có: BD = ED (cmt)
DBF = DEC (cmt)
BF = EC (cmt)
=> △BDF = △EDC (c.g.c)
d, Vì △BDF = △EDC (cmt)
=> BDF = EDC (2 góc tương ứng)
Ta có: BDE + EDC = 180o (2 góc kề bù)
=> BDE + BDF = 180o
=> FDE = 180o
=> 3 điểm F, D, E thẳng hàng
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Hình bạn tự vẽ nha!
a)
Xét tam giác ABM và tam giác ADM có:
AB = AD (gt)
BM = DM (vì M là trung điểm của BD)
AM là cạnh chung
=> Tam giác ABM = Tam giác ADM (c . c . c)
b) Xét tam giác ABD có:
AB = AD (gt)
=> Tam giác ABD cân tại A.
Có M là trung điểm của BD
=> AM là đường trung tuyến của tam giác ABD.
=> AM đồng thời là đường cao của tam giác ABD.
=> AM ⊥ BD.
c) Theo câu b) ta có tam giác ABM = tam giác ADM.
=> BAM = DAM (2 góc tương ứng)
Hay BAK = DAK.
Xét tam giác ABK và tam giác ADK có:
AB = AD (gt)
BAK = DAK (cmt)
AK là cạnh chung
=> Tam giác ABK = Tam giác ADK (c . g . c)
=> ABK = ADK (2 góc tương ứng).
d) Theo câu c) ta có tam giác ABK = tam giác ADK.
=> BK = DK (2 cạnh tương ứng).
Ta có:
ABK + KBF = 1800 (vì 2 góc kề bù)
ADK + KDC = 1800 (vì 2 góc kề bù)
Mà ABK = ADK (cmt)
=> KBF = KDC
Xét tam giác KBF và tam giác KDC có:
KB = KD (cmt)
KBF = KDC (cmt)
BF = DC (gt)
=> Tam giác KBF = Tam giác KDC (c . g . c)
=> BKF = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180 (2 góc kề bù)
Mà BKF = DKC (cmt).
=> BKD + BKF = 1800
Mà BKD + BKF = FKD.
=> FKD = 1800
=> F, K, D thẳng hàng (đpcm).
Chúc bạn học tốt!