Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc là bạn vẽ hình được!!
a) Xét 2 tam giác AMH và NMB có:
AM = MN (giả thiết)
\(\widehat{AMH}=\widehat{BMN}\) (hai góc đối đỉnh)
BM = MH (giả thiết)
=> \(\Delta\)AMH = \(\Delta\)NMB (c.g.c)
=> \(\widehat{MBN}=\widehat{MHA}=90^o\)(hai góc tương ứng) => \(NB⊥BC\)
b) Vì \(\Delta\)ABC cân tại A => \(\widehat{ABC}< 90^o\), mà \(\widehat{MBN}=90^o\) (cmt)
=> \(\widehat{ABC}< \widehat{MBN}\)
Xét \(\Delta ABN\), đường trung tuyến BM có \(\widehat{ABC}< \widehat{MBN}\) => BN < BA.
c) Xét tứ giác ABNH có: BM = MH (giả thiết)
MN = AM (giả thiết)
=> tứ giác ABNH là hình bình hành (theo DHNB)
=> AM là tia phân giác \(\widehat{BAH}\)(tính chất của hình bình hành)
=> \(\widehat{BAM}=\widehat{MAH}\)
d \(\Delta ABC\)cân tại A (giả thiết), AH là đường cao => \(AH⊥BC\) (1)=> AH cũng là đường trung tuyến => BH = HC.
Xét \(\Delta BNC\)vuông tại B có, đường trung tuyến BI (giả thiết)
=> BI = IC (t/c đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền trong tam giác vuông)
=> \(\Delta BIC\)cân tại I, mà BH = HC (cmt) => IH là đường trung tuyến của \(\Delta BIC\)cân
=> IH cũng là đường cao của \(\Delta BIC\)=> \(IH⊥BC\)(2)
Từ (1) và (2) => A, H, I thẳng hàng.
P/s: mình mất 45 phút để viết hết toàn bộ bài này!!
Tự vẽ hình nha :
a)
Xét tam giác AMH và tam giác NMB có :
AM = NM
BM = HM => \(\Delta AMH=\Delta NMB\) (1)
Góc BMN = góc HMA
b) Từ 1 , ta suy ra :
AH = BN
Xét tam giác vuông AHB có AB là cạnh huyền
=> AH < AB
Đồng thời BN < AB (Điều phải chứng minh)
c) Từ BN < AB
=> Góc BAM < góc BNA (Quan hệ góc và cạnh)
Mặt khác góc BNA = góc MAH (từ 1)
=> Góc BAM = Góc MAH
d) Nối BI lại
Vì tam giác BNC vuông nên
Với BI là đường trung tuyến thì
BI = NI = IC
Xét tam giác ABI và tam giác ACI có :
BI = CI
AB = AC => \(\Delta ABI=\Delta ACI\)
AI chung
=> Góc BAI = Góc CAI
=> AI là đường phân giác của góc BAC (a)
Mặt khác , tam giác ABC cân tại A và AH là đường cao
=> AH cũng là đường phân giác (b)
Từ (a) và (b)
=> A , H , I thẳng hàng
A B C M N I a b
a.Tam giác ABC có AB=AC vậy tâm giác ABC là tam giác cân
Vậy xét tam giác AMB và AMC có AB=AC (gt)
góc B=góc C ( tam giác cân)
BM=CM (gt)
Vậy tam giác AMB=tam giác AMC (c.g.c)
b.
Vì tam giác AMB= tam giác AMC nên góc AMC= góc AMB mà AMB + AMC = 180 ( kề bù)
Vậy suy ra AMB=AMC=90 độ vậy AM vuông góc BC
Ta có AM vuông góc BC
AM vuông góc a
Vậy BC//a
c.
Ta có góc NAC=góc ACM( AN//MC)
AC chung
góc NCA= góc MAC ( AM// NC)
Vậy tam giác AMC= tam giác CNA (g.c.g)
a) Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
Hay \(\widehat{ABD}=\widehat{ACE}\)
Theo định lý Cos ta có
\(AD=\sqrt{DB^2+AB^2-2\cdot DB\cdot AB\cdot\cos DBA}\)
\(AE=\sqrt{AC^2+CE^2-2\cdot AC\cdot CE\cdot\cos ACE}\)
Vì AB = AC ( tam giác ABC cân tại A ) và DB =CE và góc DBA = góc ACE
Nên AD = AE hay tam giác ADE cân tại A
b)\(\widehat{ADB}=\widehat{AEC}\)(ADE cân)
Nên góc KCE = góc DBH
Vậy \(\widehat{HBA}=\widehat{KCA}\)( góc DBA = góc ACE)
Xét tam giác HBA và tam giác ACK vuông có :
+ góc HBA = góc KCA
+ AB = AC
\(\Rightarrow\Delta HBA=\Delta KCA\left(ch-gn\right)\)=> HB = KC (hai cạnh tương ứng)
c) Ta có \(180^0=\widehat{HBA}+\widehat{ABC}+\widehat{OBC}\)
\(180^0=\widehat{ACK}+\widehat{ACB+\widehat{OCB}}\)
\(\widehat{HBA}=\widehat{ACK}\)
\(\widehat{ABC}=\widehat{ACB}\)
Nên \(\widehat{OCB}=\widehat{OBC}\)hay tam giâc OBC cân tại O
d) Xét tam giác AMB và tam giác AMC
+ AM chung
+ BM = MC (gt)
+ AB = AC (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c-c-c
Và hai góc BAM = góc CAM
Hay AM là tia phân giác của góc BAC
Xét tam giác AOB và tam giác ACO
+ AB = AC (gt)
+ OB = OC (cmt )
+ góc ABO = góc ACO vì \(\widehat{ABM+\widehat{OBC}=\widehat{ACM}+\widehat{OCB}}\)
Vậy hai tam giác trên bằng nhau theo trường hợp c-g-c
Và góc BAO = góc CAO
Hay AO là phân giác của góc BAC
Một góc chỉ có duy nhất một tia phân giác nên AM và AO là một hay A,M,O thẳng hàng
Lâu rồi k giải toán, giờ trở lại vs Toán thân iu
Ta có hình vẽ:
A B C D M I K
a/ Xét tam giác ABD và tam giác CMD có:
AD = DC (vì D là trung điểm AC)
góc ADB = góc CDM (đối đỉnh)
DB = DM (GT)
Vậy tam giác ABD = tam giác CMD (c.g.c)
=> AB = CM (2 cạnh tương ứng)
Ta có: tam giác ABD = tam giác CMD
=> góc BAC = góc MCA (2 góc tương ứng)
b/ Xét tam giác AMD và BCD có:
AD = DC (vì D là trung điểm AC)
góc ADM = góc BDC (đối đỉnh)
DM = DB (GT)
Vậy tam giác AMD = tam giác BCD (c.g.c)
=> góc MAD = góc DCB (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AM // BC (đpcm)
c/ Xét tam giác ABC và tam giác AMC có:
AC: cạnh chung
AB = CM (do tam giác ABD = tam giác CMD)
AM = BC (do tam giác AMD = tam giác BCD)
=> tam giác ABC = tam giác AMC (c.c.c)
d/ Ta có: AB = CM (câu a)
Mà I là trung điểm AB
và K là trung điểm CM
=> AI = IB = MK = KC
Xét tam giác IAD và tam giác KCD có:
AI = CK (đã chứng minh trên)
góc BAC = góc MCA (câu a)
AD = DC (vì D là trung điểm AC)
=> tam giác IAD = tam giác KCD (c.g.c)
=> góc IDA = góc KDC (2 góc tương ứng)
Ta có: \(\widehat{ADM}\)+\(\widehat{MDK}\)+\(\widehat{KDC}\)=1800
=> góc ADM + góc MDK + góc IDA = 1800
=> góc IDK = 1800
hay K,D,I thẳng hàng
Hình ảnh chỉ mang tính chất minh họa thui nhé bn!!
a) Xét \(\Delta ABM\)và \(\Delta ACM\)có:
\(AB=AC\)( do tam giác ABC cân tại A)
\(\widehat{ABM}=\widehat{ACM}\)( do tam giác ABC cân tại A)
\(BM=MC\)( m là trung điểm của BC)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)
b) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\)( 2 góc kề bù)
Mà \(\widehat{AMB}=\widehat{AMC}\)( 2 góc tương ứng của tam giác ABM và tam giác ACM)
\(\Rightarrow2\widehat{AMB}=180^o\)
\(\Rightarrow\widehat{AMB}=90^o\)
hay nói cách khác \(AM\perp BC\)
c) Ta có: \(\widehat{BAM}=\widehat{MAC}\)( 2 góc tương ứng của tam giác ABM và tam giác ACM)
và AM nằm giữa góc BAC
\(\Rightarrow AM\)là tia phân giác của \(\widehat{BAC}\)
d) Xét \(\Delta AMB\)và \(\Delta DMC\)có:
\(AM=MD\)(gt)
\(\widehat{AMB}=\widehat{DMC}\)( 2 góc đối đỉnh)
\(BM=MC\)( M là trung điểm BC)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right)\)
\(\Rightarrow AB=CD\)( 2 cạnh tương ứng) (1)
mà \(AB=AC\)( tam giác ABC cân tại A) (2)
Từ (1) và (2) \(\Rightarrow AC=CD\)
\(\Rightarrow\Delta ACD\)cân tại C
e) Xét \(\Delta ABC\)và \(\Delta CEA\)có:
\(AB=AC\)( tam giác ABC cân tại A)
\(\widehat{ACB}=\widehat{CAE}\)( 2 góc so le trong)
\(BC=AE\left(gt\right)\)
\(\Rightarrow\Delta ABC=\Delta CEA\left(c-g-c\right)\)
f) Gọi tia đối AE là AI
Ta có: \(\widehat{IAB}+\widehat{BAC}+\widehat{CAE}=180^O\)( I ; A; E thẳng hàng)
hay \(\widehat{MCD}+\widehat{ACE}+\widehat{ACB}=180^o\)
\(\Rightarrow D;C;E\)thẳng hàng
hok tốt!!
a) xét \(\Delta\)ABH và\(\Delta\)AHC có:AH chung. BH=HC.AB=AC=>bằng nhau ccc=>góc AHC =góc AHB
mà AHB + AHC =180 độ => góc AHB=AHC=90độ (đpcm)
b)ta thấy góc ABC+CBD=180độ;góc ACB+BCE=180độ=>góc CBD=BCE(kề bù vs 2 góc băng nhau)
xét \(\Delta\)DBC và\(\Delta\)BCE có :BD=CE,góc CBD=BCE,BC chung =>góc D= E,góc DCB=DBC=>góc DBK=ECK(vì góc DBC=ECB)
xét \(\Delta\)DBK và EKC có góc D=E,BD=CE,góc DBK=ECK=>bằng nhau gcg