K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

a, xet \(\Delta BDA\) va \(\Delta KDC\)

\(\widehat{ABD}=\widehat{DKC}=90^o\)

\(\widehat{ADB}=\widehat{KDC}\left(dd\right)\Rightarrow\Delta BDA\infty\Delta KDC\)

\(\Rightarrow\dfrac{BD}{DA}=\dfrac{DK}{DC}\)

b, xet \(\Delta DBK\) va \(\Delta DAC\)

\(\Rightarrow\dfrac{BD}{DA}=\dfrac{DK}{DC}\) , \(\widehat{BDK}=\widehat{ADC}\left(dd\right)\)

\(\Rightarrow\Delta DBK\infty\Delta DAC\left(cgc\right)\)

c, \(\Delta ABD\infty\Delta AKI\) ( \(\widehat{A}chung\);\(\widehat{ABD}=\widehat{AKI}=90\) )

\(\Rightarrow\widehat{ADB}=\widehat{AIK}\) hay \(\widehat{ADB}=\widehat{BIC}\)

xet \(\Delta ABD\) va \(\Delta CBI\)

\(\widehat{ADB}=\widehat{BIC}\) ; \(\widehat{ABD}=\widehat{CBI}=90\)

\(\Rightarrow\Delta ABD\infty\Delta CBI\left(gg\right)\)

\(\Rightarrow\dfrac{AB}{BD}=\dfrac{BC}{BI}\)

\(\Rightarrow AB.BI=BC.BD\)

\(\Rightarrow AB.\left(AI-AB\right)=BC.\left(BC-DC\right)\)

\(\Rightarrow AB.AI-AB^2=BC^2-BC.DC\)

\(\Rightarrow AB.AI+BC.DC=AC^2\)

11 tháng 5 2017

A B C I K D

25 tháng 4 2018

easy

4 tháng 5 2018

dễ trả lời đi

Bài 3: 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

DO đó: ΔHBA\(\sim\)ΔABC

SUy ra: BA/BC=BH/BA

hay \(BA^2=BH\cdot BC\)

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

Do đó: BD=60/7(cm); CD=80/7(cm)

28 tháng 8 2020

Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé

a, Xét tam giác BDA và tam giác KDC có:       Góc BDA= Góc KDC(đối đỉnh)

                                                                         Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

=>\(\frac{DB}{DA}=\frac{DK}{DC}\)

b, Xét tam giác DBK và tam giác DAC có:      Góc BDK= Góc DAC(đối đỉnh)

                                                                        \(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

c, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại B, ta có:

BC2=AC2-AB2

BC2=52-32

BC2=16

BC=4(cm)

Vì AD là phân giác 

=>\(\frac{AB}{AC}=\frac{BD}{CD}\)

=>\(\frac{AB}{AC+AB}=\frac{BD}{CD+BD}\)

=>\(\frac{3}{5+3}=\frac{BD}{BC}\)

=>\(\frac{3}{8}=\frac{BD}{4}\)

=>BD=1,5(cm)

=>CD=BC-BD

     CD=4-1,5

     CD=2,5(cm)