Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nhớ rằng \(\cos ^2a+\sin ^2a=1\). Ta có:
\(B=(1-\sin ^4a-\cos ^4a)(\tan ^2a+\cot ^2a+2)\)
\(=[1+2\sin ^2a\cos ^2a-(\sin^4a+\cos ^4a+2\sin ^2a\cos ^2a)](\frac{\sin ^2a}{\cos ^2a}+\frac{\cos ^2a}{\sin ^2a}+2)\)
\(=[1+2\sin ^2a\cos ^2a-(\sin ^2a+\cos ^2a)^2].\frac{\sin ^4a+\cos ^4a+2\sin ^2a\cos ^2a}{\cos ^2a\sin ^2a}\)
\(=[1+2\sin ^2a\cos ^2a-1^2].\frac{(\sin ^2a+\cos ^2a)^2}{\cos ^2a\sin ^a}\)
\(=2\sin ^2a\cos ^2a.\frac{1^2}{\cos ^2a\sin ^2a}=2\)
a) Xét tam giác ADC và tam giác BEC , có
góc C chung
góc ADC=góc CBE (=90*)
=> tam giác ADC đông dạng với tam giác BEC (g.g)
b) Xét tam giác ABK và tam giác AEK, có
góc BDK = góc AEK (=90*_
góc BKD=AKE ( đối đỉnh)
=> tam giác BDK ~ tam giác AEK (g.g)
=> BK/KD=KE/AK ( tỉ lệ đồng dạng )
=> BK.KE=AK.KD ( đpcm)
Lời giải:
Kẻ đường cao $BH$ của tam giác $ABC$.
\(S_{ABC}=\frac{BH.AC}{2}(1)\)
Theo công thức lượng giác: \(\sin A=\frac{BH}{AB}\Rightarrow BH=\sin A. AB(2)\)
Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin A. AB.AC}{2}=\frac{bc\sin \alpha}{2}\)
Hình vẽ: