\(\Delta ABC\)vuông tại A, đường cao AH, đường trung tuyến AM. Gọi D, E theo thứ tự l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

A C B M H E D O I

Cm: a) Ta có: BA \(\perp\)AC (gt)

                        HD // AB (gt)

=> HD \(\perp\)AC => \(\widehat{HDA}=90^0\)

Ta lại có: AC \(\perp\)AB (gt)

   HE // AC (gt)

=> HE \(\perp\)AB => \(\widehat{HEA}=90^0\)

Xét tứ giác AEHD có: \(\widehat{A}=\widehat{AEH}=\widehat{HDA}=90^0\)

=> AEHD là HCN => AH = DE

b) Gọi O là giao điểm của AH và DE

Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => \(\widehat{OAD}=\widehat{ODA}\) (1)

Xét t/giác ABC vuông tại A có AM là đường trung tuyến

-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => \(\widehat{MAC}=\widehat{C}\)

Ta có: \(\widehat{B}+\widehat{C}=90^0\) (phụ nhau)

  \(\widehat{C}+\widehat{HAC}=90^0\) (phụ nhau)

=> \(\widehat{B}=\widehat{HAC}\) hay \(\widehat{B}=\widehat{OAD}\) (2) 
Từ (1) và (2) => \(\widehat{ODA}=\widehat{B}\)

Gọi I là giao điểm của MA và ED

Xét t/giác IAD có: \(\widehat{IAD}+\widehat{IDA}+\widehat{AID}=180^0\) (tổng 3 góc của 1 t/giác)

=> \(\widehat{AID}=180^0-\left(IAD+\widehat{IDA}\right)\)

hay \(\widehat{AID}=180^0-\left(\widehat{B}+\widehat{C}\right)=180^0-90^0=90^0\)

=> \(AM\perp DE\)(Đpcm)

c) (thiếu đề)

2 tháng 4 2018

easy như 1 trò đùa

29 tháng 10 2022

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc MCA

Ta có: ADHE là hình chữ nhật

nên góc AED=góc AHD=góc ABC

=>góc AED+góc MAC=90 độ

=>AM vuông góc với DE

c: Để AM=DE thì M trùng với H

=>ΔABC cân tại A

=>AB=AC