Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AECD có
O là trung điểm của đường chéo AC(gt)
O là trung điểm của đường chéo DE(do D và E đối xứng nhau qua O)
Do đó: AECD là hình bình hành(dấu hiệu nhận biết hình bình hành)
mà \(\widehat{ADC}=90\)độ(do AD⊥BC)
nên AECD là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ΔABC cân tại A(gt)
mà AD là đường cao ứng với cạnh đáy BC(do AD⊥BC)
nên AD cũng là đường trung tuyến ứng với cạnh đáy BC của ΔABC cân tại A(định lí tam giác cân)
⇒D là trung điểm của BC
Ta có: AE//DC(do AE và DC là hai cạnh đối của hình chữ nhật ABCD)
mà B∈DC
nên AE//BD
Ta có:AE=DC(do AE và DC là hai cạnh đối của hình chữ nhật ABCD)
mà BD=DC(do D là trung điểm của BC)
nên AE=BD
Xét tứ giác AEDB có
AE//BD(cmt) và AE=BD(cmt)
nên AEDB là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒Hai đường chéo AD và BE cắt nhau tại trung điểm mỗi đường(định lí hình bình hành)
mà I là trung điểm của AD(gt)
nên I là trung điểm của BE(đpcm)
A B C D K I O E
* Giả thiết kết luận bạn tự trình bày nhé
a) Ta có : AO = OC (gt) ( do D đối xứng với E qua O ) \(\widehat{ADC}=90^o\)(gt) . Vậy ADCE là hình chữ nhật
b) ADCE là hình chữ nhật thì AE // DC , AE = DC . Mà DC = BD ( do tam giác ABC cân ) . Suy ra , AE = BD
=> ABDE là hình bình hành . I là trung điểm của AD thì I là trung điểm của BE
c) Áp dụng định lí Py - ta - go cho tam giác vuông ABD
\(AD=\sqrt{AB^2-\left(\frac{BC}{2}\right)^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(S_{\Delta OAD}=\frac{1}{2}S_{ADC}=\frac{1}{2}.\frac{1}{2}.AD.DC=\frac{1}{4}.8.6=12\left(cm\right)\)
d) Tứ giác ABDE là hình bình hành do đó AKDE là hình thang
Để AKDE là hình thang cân thì KD = AE
Mà \(\hept{\begin{cases}KD=\frac{1}{2}AC\\AE=\frac{1}{2}BC\end{cases}\Rightarrow}AC=BC\)
\(\Rightarrow\Delta ABC\)là tam giác đều
Sửa lại câu hỏi câu a: CMR: Tứ giác MCKA là hình chữ nhật,
Bạn tự vẽ hình nha
a) CMR: Tứ giác MCKA là hình chữ nhật:
Vì M đối xứng K qua I ( gt) => I là trung điểm của MK ( định nghĩa 2 điểm đx)
Xét tứ giác MCKA có
I là trung điểm của AC ( gt)
I là trung điểm của MK (cmt)
=> Tứ giác MCKA là hình bình hành (dhnb hbh)
mà BAC =90 ( gt)
=> Tứ giác MCKA là hình chữ nhật (dhnb hcn)
b) Tìm điều kiện của ABC để tứ giác AKMC là hv:
Để tứ giác AKMC là hình vuông <=> AC là đường phân giác của KAM (T/c hv)
=> KAC= CAM (đ/n) (1)
Vì ABC là tam giác cân tại A (gt) có A, là đường cao(gt)
=> AM là dường phân giác của BAC (t/c các đường trong tam giác cân)
=> BAM=CAM (đ/n) (2)
Từ (1) và (2) => BAM= KAC ( t/c bắc cầu) (3)
mà tứ giác AKMC là hcn (cmt) => KAC+ CAM=90 (đ/n) (4)
Từ (3) và (4) => BAM+ CAM=90
=.> BAC=90=> tam giác ABC vuông tại A
, mà tam giác ABC cân tại A (gt)
=> Tứ giác AKCM là hv <=> tam giác ABC vuông cân tại A (đpcm)
CHÚC BẠN HỌC TỐT!!!!!!!!
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh