K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{ACB}=90^0-50^0=40^0\)

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: DC=AB và DC//AB

c: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=BC/2

30 tháng 12 2017

Hình bạn tự vẽ nha!

Ta có:

AH_|_BC(AH là đường cao tam giác ABC)

DK_|_BC(DK là đường trung trực của BC)

=>AH//DK(t/c đường thẳng song song)

=>góc AED=góc EDK(so le trong) (1)

=>góc BEH=góc EDK( 2 góc đồng vị) (2)

Từ (1),(2) suy ra:

góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)

Mặt khác:

Xét tam giác BKD và tam giác DKC,có:

DK cạnh chung

BK=KC( K là trung điểm của BC)

góc BKD=góc DKC=1 vuông

=> tam giác BKD=tam giác DKC(c.g.c)

=>BD=DC

=>tam giác BDC cân tại D 

Nên góc BDK=góc CDK(t/c tam giác cân) (3)

Lại do: AH//DK

=>góc CDK=góc DAH( 2 góc đồng vị) (4)

Từ (3),(4)=>góc BDK=góc DAH

Mà góc AED=góc BDK( so le trong)

E là giao điểm của BD và AH(gt)

Nên E nằm giữa BD và AH

=>góc DAE=góc DAH=góc AED

=>tam giác ADE cân tại D ( đpcm)

16 tháng 12 2018

Cái này mk áp dụng lp 8 nha !

Xét tam giác ABC có : AB=DB(GIẢ THIẾT)

                                    AE=EC(GIẢ THIẾT)

               =) DE là đường trung bình của tam giác ABC 

              =) DE = 1/2 BC

Đến chỗ này mk sửa cho bn phần b nha ! phải là cm tam giác DBF = 1/2 tam giác ABC nha ( mk nghĩ vậy )

=) BF=1/2BC =) FC = ED ( cùng bằng 1/2 BC ) 

Xét tam giác ABC có :

            FC = ED(CMT)

           BF = FC (Vì FC =1/2 AB nên  F là trung điểm của BC )

Nên ta có DF là đường trung bình tam giác ABC =) DF song song vs AC .

Chúc bn học tốt nha !

5 tháng 1 2021

giúp mình với nhé mai mình thi cuối học kì I môn toán rồi. Chúc các bạn có một kì thi tốt đẹp.

5 tháng 1 2021

đề bài sai à

câu a tam giác vuông tại A mà góc B = 90o suy ra góc C = 0o à

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

1) Tam giác ABC vuông tại A, có góc B bằng 60o. CM là tia phân giác góc ACB. Tính số đo góc AMC2) Cho \(\Delta ABC\)có AB<BC. Trên tia BA lấy điểm D sao cho BC=BD. Tia phân giác của góc B cắt cạnh AC ở E. Gọi K là trung điểm của DC.a) Chứng minh: ED=ECb) Chứng minh: \(EK\perp DC\)Các bạn chỉ cần làm b) của 2) thôi nhé! Khỏi cần vẽ hình cũng đc. Mình đã làm đc 1) và a) của 2) rồi nên bạn nào lười chỉ cần...
Đọc tiếp

1) Tam giác ABC vuông tại A, có góc B bằng 60o. CM là tia phân giác góc ACB. Tính số đo góc AMC

2) Cho \(\Delta ABC\)có AB<BC. Trên tia BA lấy điểm D sao cho BC=BD. Tia phân giác của góc B cắt cạnh AC ở E. Gọi K là trung điểm của DC.

a) Chứng minh: ED=EC

b) Chứng minh: \(EK\perp DC\)

Các bạn chỉ cần làm b) của 2) thôi nhé! Khỏi cần vẽ hình cũng đc. Mình đã làm đc 1) và a) của 2) rồi nên bạn nào lười chỉ cần làm phần b) giúp mình thôi nhé! Nếu có sai sót thì các bạn sửa giúp mình. Thanks! 

1) Xét \(\Delta ABC\)có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)

\(90^o+60^o+\widehat{ACB}=180^o\)

\(150^o+\widehat{ACB}=180^o\)

\(\widehat{ACB}=180^o-150^o\)

Vậy \(\widehat{ACB}=30^o\)

Mà CM là tia phân giác góc \(\widehat{ACB}\)nên:

\(\widehat{ACM}=\widehat{MCB}=\frac{\widehat{ACB}}{2}=\frac{30^o}{2}=15^o\)

Vậy \(\widehat{ACM}=\widehat{MCB}=15^o\)

Xét \(\Delta AMC\)có:

\(\widehat{BAC}+\widehat{AMC}+\widehat{ACM}=180^o\)

\(90^o+\widehat{AMC}+15^o=180^o\)

\(105^o+\widehat{AMC}=180^o\)

\(\widehat{AMC}=180^o-105^o\)

Vậy \(\widehat{AMC}=75^o\)

2) a) Xét \(\Delta ADE\)và \(\Delta CKE\) có:

AE=CE (E là tia phân giác cạnh AC)

\(\widehat{DEA}=\widehat{KEC}\) (đối đỉnh)

\(\widehat{C}\): Cạnh chung

Vậy \(\Delta ADE=\Delta CKE\) (g-c-g)

Suy ra: ED=EC (hai cạnh tương ứng)

b) Chứng minh: \(EK\perp DC\)

1
17 tháng 12 2018

Xét tg BDK,có:

BD=BC(gt)

DE=CE(theo phần a)

DK=CK(gt)

=>B,E,K thẳng hàng

và BK là đưòng trung trực của tg BDK

mà \(K\in DC\)

=>BK \(\perp\)DC hay \(KE\perp DC\)

hay EK 

5 tháng 1 2018

Câu 1 : C

Câu 2 : C

Câu 3 : A B C D M K H 1 2

a) Xét tam giác AMB và tam giác DMC , có :

AM = DM ( gt )

BM = CM ( gt )

góc AMB = góc DMC ( đối đỉnh )

=> tam giác AMB = tam giác DMC

=> DC = AB ( hai cạnh tương ứng )

Vậy DC = AB

b) Xét tam giác AKM và tam giác DHM , có :

góc AKM = góc DHM ( = 90o )

góc M1 = góc M2 ( đối đỉnh )

MA = MD ( gt )

=> tam giác AKM = tam giác DHM ( g-c-g )

=> HD = AK ( hai cạnh tương ứng )

=> góc KAM = góc HDM ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên HD // AK ( dấu hiệu nhận biết hai đường thẳng song song )

Vậy HD = AK ; HD // AK ( đpcm )