Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(K đăng hình đc nên hình tự vẽ)
Kẻ \(AH\perp BC\left(H\in BC\right)\)
• Xét \(\Delta HAC\) vuông tại \(H\) có
\(\sin C=\dfrac{AH}{AC}\Rightarrow AH=\sin50^o.35\approx26,81\left(cm\right)\)
\(\cos C=\dfrac{HC}{AC}\Rightarrow HC=\cos50^o.35\approx22,5\left(cm\right)\)
• Xét \(\Delta HAB\) vuông tại \(H\) có
\(\tan B=\dfrac{AH}{BH}\Rightarrow BH\approx\dfrac{26,81}{\tan60^o}\approx15,48\left(cm\right)\)
\(\cos B=\dfrac{AH}{AB}\Rightarrow AB\approx\dfrac{26,81}{\cos60^o}\approx53,62\left(cm\right)\)
*Khi đó chu vi \(\Delta ABC\) bằng \(AB+BC+AC\)
\(\approx53,62+\left(22,5+15,48\right)+35\)
\(\approx192,48\left(cm\right)\)
*Khi đó \(S_{\Delta ABC}=\dfrac{AH.BC}{2}\approx\dfrac{26,81.\left(22,5+15,48\right)}{2}\approx509,12\left(cm^2\right)\)
#F.C
a: Xét ΔAHB vuông tại H có sin B=AH/AB
nên AB=5,96(cm)
=>BH=2,52(cm)
Xét ΔAHC vuông tại H có sin C=AH/AC
nên AC=7,05(cm)
=>HC=4,53(cm)
BC=2,52+4,53=7,05(cm)
C=7,05+7,05+5,96=20,06(cm)
b: góc A=180-58-40=82 độ
Xét ΔBHA vuông tại H có tan A=BH/HA
nên HA=0,56(cm)
Xét ΔBHC vuông tại H có tan C=BH/HC
nên HC=4,77(cm)
=>AC=5,33(cm)
\(S_{ABC}=\dfrac{5.33\cdot4}{2}=10.66\left(cm^2\right)\)
H B A C 30 60 mm 20
Kẻ đường cao BH ⊥ AC tại H
Tam giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
=> \(\widehat{A}=180^o-20^o-30^o=130^o\)
Xét tam giác BHC vuông tại H có :
+) sin C = \(\frac{BH}{BC}\) <=> BH = \(BC.\sin30^o\) = 30 mm
+) cos C = \(\frac{CH}{BC}\) <=> CH = \(BC.\cos30^o\) = \(30\sqrt{3}\) mm
Vì \(\widehat{BAC}+\widehat{BAH}=180^o\)
mà \(\widehat{BAC}=130^o\)
=> \(\widehat{BAH}=50^o\)
Xét tam giác ABH vuông tại H có :
tan A = \(\frac{BH}{AH}\) <=> AH = \(30\div\tan50^o\) \(\approx\) 25 mm
=> AC = HC - AH = \(30\sqrt{3}\) - 25 \(\approx\) 27 mm
=> \(S_{ABC}=\) \(\frac{BH.AC}{2}\) = 405 \(mm^2\)
Goi D la trung diem AB , E la trung diem AC
Khi DE la duong trung bnh tam giac ABC
\(\Rightarrow\hept{\begin{cases}DE//BC\\DE=\frac{1}{2}BC\end{cases}\Rightarrow\hept{\begin{cases}DE\perp AH\\DE=AH\end{cases}}}\) (1)
Ma DE cung di qua trung die AH ( tinh chat duong trung binh) (2)
Tu (1) va (2) suy ra ADHE la hinh vuong
\(\Rightarrow\widehat{A}=90^0\Rightarrow\widehat{C}=90^0-75^0=15^0\)
@Upin & Ipin :
Ta có DE = AH, DE đi qua trung điểm AH và DE vuông góc AH nhưng AH không đi qua trung điểm DE ( chưa c/m ) thì ADHE chưa thể là hình vuông.
Mà cứ cho như là hình vuông thì tam giác ABC vuông tại A, suy ra trung tuyến AI bằng nửa BC hay I trùng H ( mâu thuẫn ).
Tại mình cũng từng nghĩ như này nhưng sai nên mới lên đây hỏi, ai dè...