Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Kẻ đường cao $AH$ của tam giác $ABC$.
Theo công thức lượng giác:
\(\tan B=\frac{AH}{BH}\Rightarrow AH=\tan B.BH=\tan 20^0.BH\)
\(\tan C=\frac{AH}{CH}\Rightarrow AH=\tan C.CH=\tan 30^0.CH\)
\(\Rightarrow \tan 20^0.BH=\tan 30^0.CH\)
\(\Rightarrow \frac{BH}{\tan 30^0}=\frac{CH}{\tan 20^0}=\frac{BH+CH}{\tan 30^0+\tan 20^0}=\frac{BC}{\tan 20^0+\tan 30^0}=\frac{6}{\tan 20^0+\tan 30^0}\) (tính chất dãy tỉ số bằng nhau)
\(\Rightarrow BH=\frac{6\tan 30^0}{\tan 20^0+\tan 30^0}\)
\(\Rightarrow AH=\tan 20^0.BH=\frac{6\tan 20^0\tan 30^0}{\tan 20^0+\tan 30^0}\)
Do đó $S_{ABC}=\frac{AH.BC}{2}=\frac{6.6\tan 20^0\tan 30^0}{2(\tan 20^0+\tan 30^0)}\aprrox 4(cm^2)$
Đẳng thức cần chứng minh tương đương với:
\(\dfrac{2a+b+c}{\left(a+b\right)\left(a+c\right)}=\dfrac{3}{a+b+c}\)
\(\Leftrightarrow\left(2a+b+c\right)\left(a+b+c\right)=3\left(a^2+ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+b^2+c^2+3ab+3ac+2bc=3a^2+3ab+3bc+3ca\)
\(\Leftrightarrow a^2=b^2+c^2-bc\).
Đây chính là định lý hàm cos cho tam giác ABC có \(\widehat{A}=60^o\).
(Phần chứng minh bạn có thể xem ở Cho tam giác ABC có Â=60 độ. Chứng minh rằng BC^2=AB^2 AC^2-AB.BC - Hoc24)
H B A C 30 60 mm 20
Kẻ đường cao BH ⊥ AC tại H
Tam giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
=> \(\widehat{A}=180^o-20^o-30^o=130^o\)
Xét tam giác BHC vuông tại H có :
+) sin C = \(\frac{BH}{BC}\) <=> BH = \(BC.\sin30^o\) = 30 mm
+) cos C = \(\frac{CH}{BC}\) <=> CH = \(BC.\cos30^o\) = \(30\sqrt{3}\) mm
Vì \(\widehat{BAC}+\widehat{BAH}=180^o\)
mà \(\widehat{BAC}=130^o\)
=> \(\widehat{BAH}=50^o\)
Xét tam giác ABH vuông tại H có :
tan A = \(\frac{BH}{AH}\) <=> AH = \(30\div\tan50^o\) \(\approx\) 25 mm
=> AC = HC - AH = \(30\sqrt{3}\) - 25 \(\approx\) 27 mm
=> \(S_{ABC}=\) \(\frac{BH.AC}{2}\) = 405 \(mm^2\)