K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

1

a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)

rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau 

suy ra AM = AN 

b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)

rồi chứng minh hai tam giác ABH và ACK bằng nhau

suy ra BH = CK

c) vì hai tam giác ABH và ACK bằng nhau (cmt)

nên AH = AK

d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)

nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)

còn lại tự cm

e) dễ cm tam giác ABC đều 

vẽ \(BH\perp AC\)

nên BH vừa là đường cao; phân giác và trung tuyến

dễ cm \(\Delta BHC=\Delta NKC\)

nên \(\widehat{BCH}=\widehat{NCK}=60^0\)

từ đó dễ cm AMN cân và OBC dều

4 tháng 2 2018

a) xét \(\Delta MBE\)vuông tại E và \(\Delta HBE\)

có \(EM=EH\left(gt\right)\)

BE là cạnh chung

\(\Rightarrow\Delta MBE=\Delta HBE\left(ch-cgv\right)\)

\(\Rightarrow\widehat{MBE}=\widehat{HBE}\)( 2 góc tương ứng)

xét \(\Delta MAE\)VUÔNG TẠI E và \(\Delta HAE\)VUÔNG TẠI E

CÓ EM=EH (gt)

AE LÀ CẠNH CHUNG

\(\Rightarrow\Delta MAE=\Delta HAE\left(ch-cgv\right)\)

\(\Rightarrow\widehat{MAE}=\widehat{HAE}\)(2 GÓC TƯƠNG ỨNG)

XÉT \(\Delta ABM\)VÀ \(\Delta ABH\)

CÓ \(\widehat{MBE}=\widehat{HBE}\left(cmt\right)\)

AB LÀ CẠNH CHUNG

\(\widehat{MAE}=\widehat{HAE}\left(cmt\right)\)

\(\Rightarrow\Delta ABM=\Delta ABH\left(g-c-g\right)\)

MÀ TAM GIÁC ABH VUÔNG TẠI H

=> TAM GIÁC ABM VUÔNG TẠI M

=> \(AM\perp BM\)( ĐỊNH LÍ)

B) TA CÓ \(AC\perp AB\)

             \(HE\perp AB\)

\(\Rightarrow AC//HE\)(ĐỊNH LÍ)

\(\Rightarrow\widehat{EHA}=\widehat{HAF}\left(SLT\right)\)

XÉT \(\Delta EHA\)VUÔNG TẠI E VÀ \(\Delta FAH\)VUÔNG TẠI F

CÓ \(\widehat{EHA}=\widehat{HAF}\left(cmt\right)\)

HA LÀ CẠNH CHUNG

\(\Rightarrow\Delta EHA=\Delta FAH\left(ch-gn\right)\)

=> EA = FH (2 CẠNH TƯƠNG ỨNG)

XÉT \(\Delta EAH\)VUÔNG TẠI E VÀ \(\Delta HFE\)VUÔNG TẠI H

CÓ EA= FH (cmt)

EH LÀ CẠNH CHUNG

\(\Rightarrow\Delta EAH=\Delta HFE\left(cgv-cgv\right)\)

=> AH = EF (2 CẠNH TƯƠNG ỨNG)

CHÚC BN HỌC TỐT!!!!!!!!!!

20 tháng 4 2017

sao vẽ dc hình z Thành Đạt

15 tháng 4 2020

Câu 1:

Xét tam giác AMB và tam giác AMC ta có:

        AB = AC (tam giác ABC cân tại A)

        ABM = ACM (tam giác ABC cân tại A)

=> Tam giác AMB = tam giác AMC (ch-gn) (dpcm)

15 tháng 4 2020

Câu 2:

a) Ta có: +) AK+KB = AB => KB = AB-AK

               +) AH+HC = AC => HC = AC-AH

Mà AB=AC(tam giác ABC cân tại A) ; AK=AH (gt)

=>KB=HC

Xét tam giác BHC và tam giác CKB ta có:

          HC=KB (cmt)

          HCB=KBC (tam giác ABC cân tại A)

          BC là cạnh chung

=>tam giác BHC = tam giác CKB (c.g.c)

=>BH=CK (2 cạnh tương ứng)     (dpcm)

Xét tam giác ABH và tam giác ACK ta có:

        AB=AC (tam giác ABC cân tại A)

        BH=CK (cmt)

        AH=AK (gt)

=> tam giác ABH = tam giác ACK (c.c.c)

=> ABH = ACK (2 góc tương ứng) (dpcm)

b) Theo a) tam giác BHC= tam giác CKB

=> HBC=KCB (2 góc tương ứng) hay OBC=OCB

=> Tam giác OBC là tam giác cân tại O (dpcm)

c) Theo b tam giác OBC cân tại O => OB=OC

    Theo a góc ABH = góc ACK => KBO= HCO

Xét tam giác OKB và tam giác OHC ta có:

      KB=HC (theo a)

      KBO=HCO (cmt)

      OB=OC (cmt)

=> tam giác OKB = tam giác OHC (c.g.c)

=> OK = OH (2 cạnh tương ứng) hay tam giác OKH là tam giác cân tại O (dpcm)

d) Gọi giao điểm của AO và KH là I

Xét tam giác AKO và tam giác AHO ta có:

        AK=AH (gt)

        AO là cạnh chung

        OK=OH (theo c)

=> tam giác AKO = tam giác AHO (c.c.c)

=> KAO = HAO (2 góc tương ứng)   hay KAI=HAI

Xét tam giác KAI và tam giác HAI ta có:

          AK=AH (gt)

          KAI=HAI (cmt)

          AI là cạnh chung

=> tam giác KAI = tam giác HAI ( c.g.c)

=> KI=HI ,   mà I nằm giữa H và K

=> I là trung điểm của KH hay

AO đi qua trung điểm của KH (dpcm)

19 tháng 5 2017

A B C D K E H

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^o\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^o\)(kề bù)

\(\widehat{ABC}=\widehat{ACB}\) (do \(\Delta ABC\) cân tại A)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét hai tam giác ABD và ACE có:

\(\widehat{BAD}=\widehat{CAE}\) (gt)

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

Vậy: \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)

Suy ra: BD = CE (hai cạnh tương ứng)

b) Xét hai tam giác BHD và CKE có:

BD = CE (cmt)

\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ABD=\Delta ACE\))

Vậy: \(\Delta BHD=\Delta CKE\left(ch-gn\right)\)

Suy ra: BH = CK (hai cạnh tương ứng).

MK cần bạn vẽ hình để giải được câu b và c nhé 

Ta có AB vuông AC; EK vuông AC Nên AB song song với EK

=> goc BAE= goc AEK (1) ( hai góc so le trong)

Lại có góc BAE= góc BEA (2) ( do tam giác ABM= tam giác EBM chứng minh ở câu a)

 (1)(2)=> góc AEB = góc AEK

c.

Xét \(\Delta AEH\)và \(\Delta AEK\)

\(H=K\)

Chung \(AE\)

\(\Rightarrow\Delta AEH=\Delta AEK\left(ch-gn\right)\Rightarrow\hept{\begin{cases}AH=AK\\HAE=KAE\end{cases}}\)

Gọi giao điểm giữa HK và AE là N

Xét \(\Delta AHN\)và \(\Delta AKN\)

\(AH=AK\left(cmt\right)\)

\(HAN=KAN\left(cmt\right)\)

Chung \(AN\)

\(\Rightarrow\Delta AHN=\Delta AKN\left(c.g.c\right)\Rightarrow AMH=AMK\Rightarrow2AMH=AMK+AMH=180\Rightarrow AMH=90\)

Vậy \(AE\perp HK\)tại \(N\)

LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ 

Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)

Xét tam giác MAB và tam giác MAC 

     MB=MC(tam giác MBC đều)

     Chung MA

     AB=AC(tam giác ABC cân tại A)

=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA

=> góc BMA=30 độ

Xét tam giác BMA và tam giác BCD 

     góc BMA=BCD(=30)

     BM=BC(tam giác MBC đều)

     goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )

=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40

=> BAD=(180-40)/2=70

     

Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)

Xét tam giác BIA và tam giác CIA

     AB=AC ( ABC cân tại A)

     ABI=ACI(=10)

     BI=CI(do BIC đều)

=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20

Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)

Do đó BAI=BDC hay BDC=20