K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

Câu 1:

Xét tam giác AMB và tam giác AMC ta có:

        AB = AC (tam giác ABC cân tại A)

        ABM = ACM (tam giác ABC cân tại A)

=> Tam giác AMB = tam giác AMC (ch-gn) (dpcm)

15 tháng 4 2020

Câu 2:

a) Ta có: +) AK+KB = AB => KB = AB-AK

               +) AH+HC = AC => HC = AC-AH

Mà AB=AC(tam giác ABC cân tại A) ; AK=AH (gt)

=>KB=HC

Xét tam giác BHC và tam giác CKB ta có:

          HC=KB (cmt)

          HCB=KBC (tam giác ABC cân tại A)

          BC là cạnh chung

=>tam giác BHC = tam giác CKB (c.g.c)

=>BH=CK (2 cạnh tương ứng)     (dpcm)

Xét tam giác ABH và tam giác ACK ta có:

        AB=AC (tam giác ABC cân tại A)

        BH=CK (cmt)

        AH=AK (gt)

=> tam giác ABH = tam giác ACK (c.c.c)

=> ABH = ACK (2 góc tương ứng) (dpcm)

b) Theo a) tam giác BHC= tam giác CKB

=> HBC=KCB (2 góc tương ứng) hay OBC=OCB

=> Tam giác OBC là tam giác cân tại O (dpcm)

c) Theo b tam giác OBC cân tại O => OB=OC

    Theo a góc ABH = góc ACK => KBO= HCO

Xét tam giác OKB và tam giác OHC ta có:

      KB=HC (theo a)

      KBO=HCO (cmt)

      OB=OC (cmt)

=> tam giác OKB = tam giác OHC (c.g.c)

=> OK = OH (2 cạnh tương ứng) hay tam giác OKH là tam giác cân tại O (dpcm)

d) Gọi giao điểm của AO và KH là I

Xét tam giác AKO và tam giác AHO ta có:

        AK=AH (gt)

        AO là cạnh chung

        OK=OH (theo c)

=> tam giác AKO = tam giác AHO (c.c.c)

=> KAO = HAO (2 góc tương ứng)   hay KAI=HAI

Xét tam giác KAI và tam giác HAI ta có:

          AK=AH (gt)

          KAI=HAI (cmt)

          AI là cạnh chung

=> tam giác KAI = tam giác HAI ( c.g.c)

=> KI=HI ,   mà I nằm giữa H và K

=> I là trung điểm của KH hay

AO đi qua trung điểm của KH (dpcm)

14 tháng 1 2019

a) Xét tam giác BKC và tam giác CHB

+ BC chung 

+ BK = HC vì AB = AC ; AK = AH => AB-AK=AC-AH

+ góc ABC = góc HCB  (tam giác ABC cân)

Vậy tam giác BKC = tam giác CHB (c.g.c)

Và góc BKC = góc CHB

\(\widehat{KOB}=\widehat{HOC}\)(đối đỉnh)

\(\widehat{BKO}=\widehat{CHO}\left(cmt\right)\)

\(\Rightarrow\widehat{KBO}=\widehat{HCO}\)(3 góc trong tam giác)

Xét \(\Delta OKB\)và \(\Delta OHC\)

+ BK = HC

\(\widehat{KBO}=\widehat{OCH}\)

\(\widehat{OKB}=\widehat{OHC}\)

Vậy \(\Delta OKB=\Delta OHC\left(g.c.g\right)\)

VÀ OH = OK (hai cạnh tương ứng ) => Tam giác OKH cân tại O

OB = OC (hai cạnh tương ứng) => Tam giác OBC cân tại O 

c) Xét \(\Delta AKO\)và \(\Delta AHO\)

+ AO chung

+ OK = OH

+ AH = AK

\(\Rightarrow\Delta AKO=\Delta AHO\left(c.c.c\right)\)

=> Góc KAO = góc HAO

Gọi giao điểm của KH và AO là F

Xét tam giác AFK và tam giác AFH

+ AK = AH

+ ÀF chung

+góc KAF = góc HAF (cmt)

Vậy tam giác AFK = tam giác AFH (c.g.c)

Và KF = FH(hai cạnh tương ứng)

Hay AO đi qua trung điểm của HK

5 tháng 7 2021

 Xét ΔAHB và ΔAKC có:

AH=AK (GT)

A là góc nhọn chung

AB=AC (GT)

⇒ΔAHB=ΔAKC (c.g.c)

⇒ABH=ACH (2 góc tương ứng)

⇒ABC-ABH=ACB-ACK

⇒OBC=OCB 

⇒ΔOBC cân tại O

k mik nha

5 tháng 7 2021

Thanks ^^

9 tháng 8 2020

1

a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)

rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau 

suy ra AM = AN 

b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)

rồi chứng minh hai tam giác ABH và ACK bằng nhau

suy ra BH = CK

c) vì hai tam giác ABH và ACK bằng nhau (cmt)

nên AH = AK

d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)

nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)

còn lại tự cm

e) dễ cm tam giác ABC đều 

vẽ \(BH\perp AC\)

nên BH vừa là đường cao; phân giác và trung tuyến

dễ cm \(\Delta BHC=\Delta NKC\)

nên \(\widehat{BCH}=\widehat{NCK}=60^0\)

từ đó dễ cm AMN cân và OBC dều

suy nghĩ hơi lâu à nha ~~~ đợi chút

8 tháng 2 2020

https://olm.vn/hoi-dap/detail/8238415826.html Link câu trl

a: Xét ΔABH và ΔACK có 

AB=AC

\(\widehat{A}\) chung

AH=AK

Do đó: ΔABH=ΔACK

1 tháng 1 2022

Xét ΔAHB và ΔAKC có:

 

 AB=AC(gt)

 

A^ : góc chung

 

AH=AK(gt)

 

=>ΔAHB=ΔAKC(c.g.c)

 

=>ˆABH=ˆACK

 

Có: ˆB=ˆABH+ˆCBH

 

      ˆC=ˆACK+ˆBCK

 

Mà ˆB=ˆC(gt);^ABH=ˆACK(cmt)

 

=> ˆCBH=ˆBCK

 

=>ΔOBC cân tại O

31 tháng 5 2017

Hình vẽ:

A B C K H O 1 2 1 2

Giải:

Xét \(\Delta ABH\)\(\Delta ACK\) có:

\(AH=AK\left(gt\right)\)

\(\widehat{A}\) là góc chung

\(AB=AC\) ( Vì \(\Delta ABC\) cân tại \(A\) )

Do đó: \(\Delta ABH=\Delta ACK\left(c.g.c\right)\)

\(\Rightarrow\widehat{B_2}=\widehat{C_2}\) ( cặp góc tương ứng )

\(\widehat{B}=\widehat{C}\) ( Do \(\Delta ABC\) cân tại \(A\) )

\(\Rightarrow\widehat{B}-\widehat{B_2}=\widehat{C}-\widehat{C_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)

\(\Rightarrow\Delta OBC\) cân tại \(O\) . \(\left(đpcm\right)\)

20 tháng 2 2018

Hình như đề bài sai thì phải. Theo đề bài trên thì BH trùng với AB; CK trùng với AC

20 tháng 2 2018

đề bài ko sai đâu