Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn tự vẽ hình)
a) Gọi AH giao BC tại điểm F. H là trực tâm của tam giác ABC => AH vuông góc với BC tại F.
Xét tam giác ABC: AF vuông góc BC, AB<AC => BF<CF (Quan hệ đường xiên, hình chiếu)
Xét tam giác AFB và tam giác AFC có:
Cạnh AF chung
^AFB=^AFC=90o => ^BAF < ^CAF (Quan hệ giữa góc và cạnh đối diện trong 2 tam giác)
BF<CF (cmt)
^BAF < ^CAF hay ^BAH<^CAH (đpcm)
b) Tam giác ABC có: AB<AC => ^ABC>^ACB hay ^EBC>^DCB.
Xét tam giác BEC và tam giác CDB có:
^BEC=^CDB=90o
Cạnh BC chung => CE>BD.
^EBC>^DCB (cmt)
Vậy CE>BD.
Hình (tự vẽ)
a) Xét \(\Delta ABDva\Delta ACE\):
\(\widehat{A}\left(chung\right)\)
\(\widehat{E}=\widehat{D}\left(=90'\right)\)
\(=>\Delta ABD\)đồng dạng \(\Delta ACE\left(g-g\right)\)
\(=>\frac{AB}{AC}=\frac{AD}{AE}< =>AB.AE=AC.AD\)
b)xét \(\Delta ADEva\Delta ABC\)
\(\widehat{A}\left(chung\right)\)
\(\frac{AB}{AC}=\frac{AD}{AE}\)
\(=>\Delta ADE\)đồng dạng \(\Delta ABC\left(c-g-c\right)\)
c)Lưu Ý! Đề phải là DE cắt CB tại I
CM:
\(\widehat{IEB}=\widehat{AED}\)(đối đỉnh)
\(\widehat{AED}=\widehat{ACB}\)(tam giác ADE đồng dạng với tam giác ABC)
\(=>\widehat{IEB}=\widehat{ACB}\)
Lại có góc I chung
\(=>\Delta IBE\) đồng dạng với \(\Delta IDC\left(g-g\right)\)
d) từ c)=>\(\frac{IB}{ID}=\frac{IE}{IC}< =>ID.IE=IB.IC=\left(OI-OB\right)\left(OI+OC\right)\)
Mà OC=OB(gt)
\(=>ID.IE=\left(OI+OC\right)\left(OI-OC\right)=OI^2-OC^2\)
Khó king khủng em mới học lớp 4 thôi để em ăn cháo sen bát bảo minh trung làm được ngay nhưng phải làm thêm tí bò húc với lại rượu đế ! la la la la la ta là một con người
A D E F B C H
Kéo dài AH cắt BC tại F .
=> AF\(_{\perp}\)BC
=> \(\Delta ABF;\Delta ACF\) vuông tại F
=> \(\begin{cases}\widehat{BAF}=90^0-\widehat{ABF}\\\widehat{CAF}=90^0-\widehat{ACF}\end{cases}\)(1)
Mặt khác vì BC < AC
\(\Rightarrow\widehat{ABC}< \widehat{ACB}\) ( 2)
Từ (1) và (2)
=> \(\widehat{BAF}>\widehat{CAF}\)