K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=(n-1)(n+1).\(n^2\).\(\left(n^2+1\right)\)

A=(n-1)(n+1).n.n.\(\left(n^2+1\right)\)

Mà n-1;n;n+1 là 3 số tự nhiên liên tiếp. Mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3.Suy ra: (n-1)(n+1).n chia hết cho 3

Suy ra: (n-1)(n+1).n.n.(\(n^2+1\)) chia hết cho 3

           Suy ra (n-1)(n+1).\(n^2\).\(\left(n^2+1\right)\) Chia hết cho 3.(đpcm)

17 tháng 6 2019

15.

Ta  có \(a+b+c+ab+bc+ac=6\)

Mà \(ab+bc+ac\le\left(a+b+c\right)^2\)

=> \(\left(a+b+c\right)^2+\left(a+b+c\right)-6\ge0\)

=> \(a+b+c\ge3\)

\(A=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\ge3\)(ĐPCM)

17 tháng 6 2019

Bài 18, Đặt \(\left(a^2-bc;b^2-ca;c^2-ab\right)\rightarrow\left(x;y;z\right)\) thì bđt trở thành

\(x^3+y^3+z^3\ge3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)

Vì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)nên ta đi chứng minh \(x+y+z\ge0\)

Thật vậy \(x+y+z=a^2-bc+b^2-ca+c^2-ab\)

                                     \(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(đúng)

Tóm lại bđt được chứng minh

Dấu "=": tại a=b=c

25 tháng 4 2016

\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}\)=\(\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

Mình nghĩ đề sai

25 tháng 4 2016

thiếu 2/n*(n+1)*(n+2)=1/n*(n+1)-1/(n+1)*(n+2) nhé tui làm mò thôi ai ngờ ra công thức 

VD:2/2*3*4=1/2*3-1/3*4=1/6-1/12=1/12

mà 2/2*3*4=2*24=1/12

\(10^n\)+18n -1=10..00(có n chữ số 0) -1+18n

                    =99...9(có n chữ số 9)-9n+27n

                    =9x(11...1(có n chữ số 1)-n)+27n

Ta thấy số 111...1 có n chữ số 1. Vậy tổng các chữ số của nó là n

Vậy 111...1(có n chữ số 1) và n chia 3 có cùng số dư

Vậy 111..1(có n chữ số 1)-n chia hết cho 3

Suy ra: 9x(11...1(có n chữ số 1)-n) chia hết cho 27, 27n chia hết cho 27

Suy ra A chia hết cho 27(đpcm)

                 

22 tháng 1 2019

A = 10n + 18n - 1
B1: Xét n = 1
=> A = 10 + 18 -1 = 27 ⋮ 27
Vậy với n = 1, mệnh đề đúng.
B2: Giả sử với n = k, mệnh đề đúng, tức là: 10k + 18k - 1 ⋮ 27
B3: Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng. Tức là: 10k+1 + 18(k+1) - 1 ⋮ 27.
Thật vậy, theo giả thiết quy nạp:
10k+1 + 18k + 18 - 1 = 10k.10 + 18k.10 - 10 + 27 - 9.18k = 10.(10k + 18k - 1) + (27 - 6.27k)
Có: 10.(10k + 18k - 1) ⋮ 27
(27 - 6.27k) ⋮ 27
=> 10k+1 + 18(k+1) - 1 ⋮ 27.
=> Điều phải chứng minh

17 tháng 4 2016

Ta có:  \(\frac{1}{n}-\frac{1}{n+a}=\frac{1.\left(n+a\right)-1.n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{n-n+a}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)

Mà \(\frac{a}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}=>\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}ĐPCM\)

17 tháng 4 2016

Nguyễn Hữu Thế cảm ơn nha

 

17 tháng 4 2016

Ta gọi A=1.2+2.3+3.4+...+n.(n+1)

          3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+n.(n+1)(n+2-n+1)

               =[1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)]-[0.1.2+1.2.3+2.3.4+...+(n-1)n(n+1)]

               =n(n+1)(n+2)

=>         A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Vậy 1.2+2.3+3.4+...+n(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

17 tháng 4 2016

nhác viết quá

2 tháng 1 2017

tỉ lệ thức????

18 tháng 3 2016

Sử dụng phương pháp quy nạp toán học 
Với n = 1, ta có: 
1 = (1 + 1)/2 (đúng) 
Giả sử mệnh đề đúng với n = k >= 1 (k thuộc N*), tức là: 
1 + 2 + 3 + 4 +.......+ k = k(1 + k)/2 
Ta sẽ chứng minh mệnh đề đúng với n = k + 1, tức là: 
1 + 2 + 3 + 4 + .......+ k +1 = (k + 1)(k + 2)/2 (*) 
Biến đổi tương đương, ta có: 
(*) <=> 1 + 2 + 3 + 4 +......+ k + k + 1 = (k + 1)(k + 2)/2 
<=> (1 + 2 + 3 + 4 +......+ k) + k + 1 = (k + 1)(k + 2)/2 
<=> k(k + 1)/2 + k + 1 = (k + 1)(k + 2)/2 
<=> (k + 1)(k/2 + 1) = (k + 1)(k + 2)/2 (đúng) 
Đẳng thức trên đúng 
Vậy theo nguyên lý quy nạp, ta chứng minh được mệnh đề: 
1 +2 + 3 + 4 +.......+ n = n(1 + n)/2

18 tháng 3 2016

Đặt biểu thức là (*)

Với n=1 

=> (*)<=> 1=\(\frac{1.\left(1+1\right)}{2}\) 

Vậy với n=1 ( đúng )

Giả sử (*) đúng với n=k

=> (*) <=> 1+2+3+...+k = \(\frac{k\left(k+1\right)}{2}\)

Ta chứng minh n=k+1

Thật vậy n=k+1 thì

(*) <=> 1+3+3+...+k+k+1 = \(\frac{k+1.\left(k+2\right)}{2}\)

<=> \(\frac{K\left(k+1\right)}{2}+K+1=\frac{\left(k+1\right).\left(k+2\right)}{2}\)

<=> \(\frac{k}{2}+1=\frac{k+2}{2}\)

<=>\(\frac{k}{2}+1=\frac{k}{2}+1\left(đúng\right)\)

Vậy (*) đúng với n=k+1

Vậy (*) đúng với mọi số tự nhiên n ϵ N ( Khác 0 )

 

12 tháng 6 2018

Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)

+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2