Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2+2019=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự ta có : \(b^2+2019=\left(a+b\right)\left(b+c\right)\)
\(c^2+2019=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(a+c\right)\left(b+c\right)}\)\(=\frac{\left(a^2-bc\right)\left(b+c\right)+\left(b^2-ac\right)\left(a+c\right)+\left(c^2-ab\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)\(=\frac{a^2b-b^2c+a^2c-bc^2+ab^2-a^2c+b^2c-ac^2+ac^2+bc^2-a^2b-ab^2}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=0\)\(\Rightarrow dpcm\)
\(\text{Thay }ab+bc+ac=2019\text{ vào biểu thức trên, ta có: }\)
\(\frac{a^2-bc}{a^2+ab+bc+ac}+\frac{b^2-ac}{b^2+ab+bc+ac}+\frac{c^2-ab}{c^2+ab+bc+ac}\)
\(=\frac{\left(a^2-bc\right).\left(b+c\right)}{\left(a+c\right).\left(a+b\right).\left(b+c\right)}+\frac{\left(b^2-ac\right).\left(a+c\right)}{\left(a+b\right).\left(b+c\right).\left(a+c\right)}+\frac{\left(c^2-ab\right).\left(a+b\right)}{\left(a+c\right).\left(b+c\right).\left(a+b\right)}\)
\(=\frac{a^2b+a^2c-b^2c-bc^2+b^2a+b^2c-a^2c-ac^2+c^2a+c^2b-a^2b-ab^2}{\left(a+c\right).\left(a+b\right).\left(b+c\right)}=0\)
Vậy...
a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)
Từ giả thiết suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\) (*) (Vì a,b,c > 0)
Áp dụng BĐT Cauchy ta có:
\(\frac{1}{\sqrt{a^3+b}}\le\frac{1}{\sqrt{2}.\sqrt[4]{a^3b}}=\frac{1}{\sqrt{2}}.\sqrt[4]{\frac{1}{a}.\frac{1}{a}.\frac{1}{a}.\frac{1}{b}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{a}+\frac{1}{b}\right)\)
Đánh giá tương tự: \(\frac{1}{\sqrt{b^3+c}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{b}+\frac{1}{c}\right);\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{c}+\frac{1}{a}\right)\)
Từ đó, kết hợp với (*) suy ra:
\(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}.4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3\sqrt{2}}{2}\)(đpcm)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1.\)
Theo đề bài thì: \(ab+bc+ca=3abc\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
\(\sum\dfrac{a}{a^2+bc}\le\sum\dfrac{a}{2a\sqrt{bc}}=\sum\dfrac{1}{2\sqrt{bc}}\)
\(\le\dfrac{1}{2}\sum\left(\dfrac{1}{2a}+\dfrac{1}{2b}\right)=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{3}{2}\)
Mặc dù chả hiểu gì cả nhưng cảm ơn c nhé!
C giải bằng phương pháp của lớp 9 được ko?
Câu hỏi của TRẦN HỮU ĐẠT - Toán lớp 9 - Học toán với OnlineMath
\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
TH1: \(a=b=c\Rightarrow P=2020^3\)
TH2: \(a+b+c=0\) ko đủ dữ kiện tính ra giá trị cụ thể của P
\(a^{2019}+a^{2019}+1+1+...+1\ge2019a^2\) (2017 số 1)
\(\Leftrightarrow2a^{2019}+2017\ge2019a^2\)
Tương tự: \(2b^{2019}+2017\ge2019b^2\) ; \(2c^{2019}+2017\ge2019c^2\)
Cộng vế với vế:
\(2\left(a^{2019}+b^{2019}+c^{2019}\right)+2017.3\ge2019\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^{2019}+b^{2019}+c^{2019}\ge\frac{2019\left(a^2+b^2+c^2\right)-2017.3}{2}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=a^3+b^3+c^3-3abc\)
\(\Rightarrow\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2019\left(đpcm\right)\)
Ta có : \(\left(a+b+c\right)\left(a^2+b^2+^2-ab-ac-bc\right)\)
\(=a^3+b^3+c^3-3abc\)
\(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2019\)
\(\Rightarrowđpcm\)