Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab+bc+ca=3abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(\dfrac{1}{a}=x;\dfrac{1}{b}=y;\dfrac{1}{c}=z\)\(\Rightarrow x+y+z=3\)
\(VT=\sum\dfrac{xyz}{yz+x^2}\le\sum\dfrac{xyz}{2x\sqrt{yz}}=\dfrac{1}{2}\sum\sqrt{yz}\le\dfrac{1}{2}\sum x=\dfrac{3}{2}\)
Lời giải:
Ta có:
\(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\leq \frac{3}{2}\)
\(\Leftrightarrow \frac{a-bc}{a(a+b+c)+bc}+\frac{b-ac}{b(a+b+c)+ca}+\frac{c-ab}{c(a+b+c)+ab}\leq \frac{3}{2}\)
\(\Leftrightarrow \frac{a-bc}{(a+b)(a+c)}+\frac{b-ac}{(b+a)(b+c)}+\frac{c-ab}{(c+a)(c+b)}\leq \frac{3}{2}\)
\(\Leftrightarrow \frac{(a-bc)(b+c)+(b-ac)(a+c)+(c-ab)(a+b)}{(a+b)(b+c)(c+a)}\leq \frac{3}{2}\)
\(\Leftrightarrow (a-bc)(b+c)+(b-ac)(a+c)+(c-ab)(a+b)\leq \frac{3}{2}(a+b)(b+c)(c+a)\)
\(\Leftrightarrow 2(ab+bc+ac)-[ab(a+b)+bc(b+c)+ac(a+c)]\leq \frac{3}{2}(1-a)(1-b)(1-c)\)
\(\Leftrightarrow 4(ab+bc+ac)-2[ab(a+b)+bc(b+c)+ac(c+a)]\leq 3(ab+bc+ac-abc)\)
\(\Leftrightarrow ab+bc+ac+3abc\leq 2[ab(a+b)+bc(b+c)+ca(c+a)]\)
\(\Leftrightarrow ab+bc+ac+9abc\leq 2[ab(a+b+c)+bc(a+b+c)+ac(a+b+c)]\)
\(\Leftrightarrow ab+bc+ac+9abc\leq 2(a+b+c)(ab+bc+ac)\)
\(\Leftrightarrow ab+bc+ac+9abc\leq 2(ab+bc+ac)\)
\(\Leftrightarrow 9abc\leq ab+bc+ac\)
\(\Leftrightarrow 9abc\leq (a+b+c)(ab+bc+ac)\)
BĐT trên luôn đúng do theo BĐT AM-GM ta có:
\((a+b+c)(ab+bc+ac)\geq 3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)
Vậy ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)
Lời giải tại link sau:
https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duongcmr-dfrac1a2bcdfrac1b2acdfrac1c2abledfracabc2abc.193908584039
nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)
Theo đề bài thì: \(ab+bc+ca=3abc\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
\(\sum\dfrac{a}{a^2+bc}\le\sum\dfrac{a}{2a\sqrt{bc}}=\sum\dfrac{1}{2\sqrt{bc}}\)
\(\le\dfrac{1}{2}\sum\left(\dfrac{1}{2a}+\dfrac{1}{2b}\right)=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{3}{2}\)
Mặc dù chả hiểu gì cả nhưng cảm ơn c nhé!
C giải bằng phương pháp của lớp 9 được ko?