Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc chia hết cho 27
\(⇒\)100a + 10b + c chia hết cho 27
\(⇒\)10(100a + 10b + c) chia hết cho 27
\(⇒\)1000a + 100b + 10c chia hết cho 27
\(⇒\)999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
Tích nha
ta có 10.( 100a +10b+c) chia hết cho 27 , mà 10 ko chia het cho 27
=> 100a+10b+c chia het cho 27 => (81a+ 19a) +10b+c chia het cho 27 , mà 81a chia het cho 27
=>19a + 10b +c chia het cho 27 => 10.( 19a+10b+c) chia het cho 27 => 190a +100b+10c chia het cho 27
=> 189a +a +100b+10c chia het cho 27 , mà 189a chia het cho 27 => a +100b +10c chia het cho 27
=> bca chia het cho 27
1) abc chia hết cho 27
chứng tỏ:a+b+c chia hết cho 27
Nên bca cũng chia hết cho 27
2) 1 số tạo bới 27 chữ số 1 là: 11111..11( 27 chữ số 1) thì sẽ có tổng:
1+1+1+1+..+1+1 ( 27 số hạng)=27
-=> số tạo bỏi 27 chữ số 1 chia hết cho 27
Câu hỏi của Phạm Ngọc Thạch - Toán lớp 6 - Học toán với OnlineMath
Tham khảo nha
abc chia hết cho 27 = > 100a + 10b + c chia hết cho 27
100a + 10b + c = 81a + (19a + 10b + c ) .Vì 81a chia hết cho 27 nên 19a + 10b + c chia hết cho 27
Ta có:bca = 100b + 10c + a = 81b + (19b + 10c + a ) = 81b + ( 19a + 10b + c) + ( 9b + 9c - 18a)
= 81b + (19a + 10c + c ) + 9 x (b + c - 2a) (1)
Nhận xét : 81b và (19a + 10b + c ) đều chia hết cho 27 (2)
b + c - 2a = (b + c + a)
Ta có abc chia hết cho 27
=> 10(100a + 10b + c) chia hết cho 27
=> 1000a + 100b + 10c chia hết cho 27
=> 999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
abc chia hết cho 27
=> abc0 chia hết cho 27
=> 1000a + bc0 chia hết cho 27
=> 999a + a + bc0 chia hết cho 27
=> 27.37a + bca chia hết cho 27
Do 27.37a chia hết cho 27 nên bca chia hết cho 27
abc chia hết cho 27
=> abc0 chia hết cho 27
=> 1000a + bc0 chia hết cho 27
=> 999a + a + bc0 chia hết cho 27
=> 27.37a + bca chia hết cho 27
Do 27.37a chia hết cho 27 nên bca chia hết cho 27
Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9
=> bca cũng chia hết cho 9 => bca = 9m (m € N)
ta có: abc = 27k với (k € N)
abc - bca = 27k - 9m
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n € N)
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm)
abc \(⋮\)27
\(\Rightarrow\)abc0 \(⋮\)27
\(\Rightarrow\)1000a + bc0 \(⋮\)27
\(\Rightarrow\)27 . 37a + bca \(⋮\)27
Do 27 . 37a \(⋮\)27 nên bca \(⋮\)27
Ta có bca = 100b + 10c + a (1)
abc chia hết 27 <=> 100a + 10b + c chia hết 27 <=> 19a + 10b + c chia hết 27
=> c = 27k - 19a - 10b
Thay vào (1) => bca = 100b + 10(27k - 19a - 10b) + a = 270k - 189a = 27(10k - 7a) chia hết 27
=> bca chia hết cho 27
Vậy khi abc chia hết cho 27 thì bca cũng chia hết cho 27.
Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9
=> bca cũng chia hết cho 9 => bca = 9m (m € N)
ta có: abc = 27k với (k € N)
abc - bca = 27k - 9m
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n € N)
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm)
Ta thấy: \(\overline{abc0}⋮27\Rightarrow\hept{\begin{cases}\overline{abc0}⋮3\\\overline{abc0}⋮9\end{cases}\Rightarrow\hept{\begin{cases}\left(a+b+c+0\right)⋮3\\\left(a+b+c+0\right)⋮9\end{cases}\Rightarrow}\hept{\begin{cases}\left(a+b+c\right)⋮3\\\left(a+b+c\right)⋮9\end{cases}\Rightarrow\left(a+b+c\right)⋮}27\Rightarrow\left(b+c+a\right)⋮27\Rightarrow bca⋮27\left(\text{ĐPCM}\right)}\)
Nếu bạn không hiểu chỗ nào thì nhắn tin cho mk để mk nói rõ hơn nha
Một số chia hết cho 27 thì chia hết cho 3 và 9 (Vì 3 x 9 = 27)
Mình chỉ cần áp dụng tính chất chia hết cho 3 và 9 thôi
HOKTOT