Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9
=> bca cũng chia hết cho 9 => bca = 9m (m € N)
ta có: abc = 27k với (k € N)
abc - bca = 27k - 9m
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n € N)
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm)
abc \(⋮\)27
\(\Rightarrow\)abc0 \(⋮\)27
\(\Rightarrow\)1000a + bc0 \(⋮\)27
\(\Rightarrow\)27 . 37a + bca \(⋮\)27
Do 27 . 37a \(⋮\)27 nên bca \(⋮\)27
abc : 27 tức là chia hết cho 3 va 9
vì số nào có tổng chia hết cho 3 và 9 thì chia hết cho 3 và 9 mà bca là đạo ngược các chữ số của abc nên tổng các cs của bca ko thay đổi.
=> bca chia hết cho 27
mk làm linh tinh thôi chứ ko chắc đâu
abc : 27 tức là chia hết cho 3 va 9
vì số nào có tổng chia hết cho 3 và 9 thì chia hết cho 3 và 9 mà bca là đạo ngược các chữ số của abc nên tổng các cs của bca ko thay đổi.
=> bca chia hết cho 27
mk làm linh tinh thôi chứ ko chắc đâu
Ta có bca = 100b + 10c + a (1)
abc chia hết 27 <=> 100a + 10b + c chia hết 27 <=> 19a + 10b + c chia hết 27
=> c = 27k - 19a - 10b
Thay vào (1) => bca = 100b + 10(27k - 19a - 10b) + a = 270k - 189a = 27(10k - 7a) chia hết 27
=> bca chia hết cho 27
Vậy khi abc chia hết cho 27 thì bca cũng chia hết cho 27.
1) abc chia hết cho 27
chứng tỏ:a+b+c chia hết cho 27
Nên bca cũng chia hết cho 27
2) 1 số tạo bới 27 chữ số 1 là: 11111..11( 27 chữ số 1) thì sẽ có tổng:
1+1+1+1+..+1+1 ( 27 số hạng)=27
-=> số tạo bỏi 27 chữ số 1 chia hết cho 27
abc chia hết cho 27
⇒100a + 10b + c chia hết cho 27
⇒10﴾100a + 10b + c﴿ chia hết cho 27
⇒1000a + 100b + 10c chia hết cho 27
⇒999a + ﴾100b + 10c + a﴿ chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
abc chia hết cho 27
=> abc0 chia hết cho 27
=> 1000a + bc0 chia hết cho 27
=> 999a + a + bc0 chia hết cho 27
=> 27.37a + bca chia hết cho 27
Do 27.37a chia hết cho 27 nên bca chia hết cho 27
abc chia hết cho 27
=> abc0 chia hết cho 27
=> 1000a + bc0 chia hết cho 27
=> 999a + a + bc0 chia hết cho 27
=> 27.37a + bca chia hết cho 27
Do 27.37a chia hết cho 27 nên bca chia hết cho 27
Ta có abc chia hết cho 27
=> 10(100a + 10b + c) chia hết cho 27
=> 1000a + 100b + 10c chia hết cho 27
=> 999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
chia hết cho 27 là chia hêt cho 3 và 9 .
abc chia hết cho 9 <=> a+b+c chia hết cho 9
do đó b+c+a chia hết cho 9 .
Vậy bca chia hết cho 27