Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a+b >2 thì a3+b3+3ab(a+b)>8a3+b3+3ab(a+b)>8
⇔ab(a+b)>2⇔ab(a+b)>2
⇔ab(a+b)>a3+b3⇔ab(a+b)>a3+b3
⇔(a−b)2(a+b)<0⇔(a−b)2(a+b)<0
vô lý nên a+b≤2a+b≤2
a3+b3=(a+b)(.....)
dễ có (...) >0 => a+b>0
kia thì áp dụng bđt 4(a3+b3)>=(a+b)3 (dễ cm mà ,,,tách a^3+b^3 ra rồi cói và bđt phụ)
Cho \(a< b< c\)là ba nghiệm của phương trình \(x^3-3x+1=0\). Chứng minh rằng:
\(a^2-c=b^2-a=c^2-b=2\)
*\(a^3+b^3=2\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\)
Vì \(a^2-ab+b^2=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)
Nên a + b > 0
*Vì a + b > 0
\(\Rightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\)
\(\Leftrightarrow4\left(a^3+b^3\right)\ge a^3+b^3+3ab\left(a+b\right)\)
\(\Leftrightarrow4.2\ge\left(a+b\right)^3\)
\(\Leftrightarrow2\ge a+b\)
Vậy .....
\(a^3+b^3=2\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\Leftrightarrow\left(a+b\right)\left[\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]=2.\)
Suy ra : a+b > 0