K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2016

Giả sử tồn tại hai số a,b sao cho \(a^3+b^3=2\) và \(a+b>2\)

Khi đó, đặt \(a=x+y\) , \(b=x-y\) 

Ta có \(a+b=x+y+x-y=2x>2\Rightarrow x>1\)

\(a^3+b^3=\left(x+y\right)^3+\left(x-y\right)^3=2x^3+6xy^2\)

Do x > 1 nên \(2x^3>2;6xy^2\ge0\). Suy ra \(a^3+b^3>2\) , trái với giả thiết đề bài.

Vậy ta có đpcm

28 tháng 9 2016

Giả sử a+b>2

=>\(a^3+b^3+3ab\left(a+b\right)>\left(a+b\right)^3=2^3=8\)

=>\(2+3ab\left(a+b\right)>8\)

=>\(3ab\left(a+b\right)>6\)

=>\(ab\left(a+b\right)>2\)

=>\(ab\left(a+b\right)>a^3+b^3\)

=>\(0>a^3+b^3-ab\left(a+b\right)\)

=>\(0>\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\)

=>\(0>\left(a+b\right)\left(a^2-2ab+b^2\right)\)

=>\(0>\left(a+b\right)\left(a-b\right)^2\) 

Vì a+b>2 (điều đã giả sử) và (a-b)2\(\ge0\) <=>\(\left(a+b\right)\left(a-b\right)^2\ge0\)

=>\(0>\left(a+b\right)\left(a-b\right)^2\) là vô lý 

=>\(a+b\le2\)

Ta có đpcm
30 tháng 9 2016

Who?

Toán lớp 8

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\)

\(\ge\left(a+b\right)\left[\left(a+b\right)^2-\frac{3\left(a+b\right)^2}{4}\right]=\frac{\left(a+b\right)^3}{4}\)

\(\Rightarrow2\ge\frac{\left(a+b\right)^3}{4}\Rightarrow a+b\le2\)

AH
Akai Haruma
Giáo viên
18 tháng 4 2018

Lời giải:

Ta có: \(a^3+b^3=2\Leftrightarrow (a+b)(a^2-ab+b^2)=2>0\)

Mà \(a^2-ab+b^2=(a-\frac{b}{2})^2+\frac{3}{4}b^2\geq 0\), do đó \(a+b>0\)

Xét hiệu:

\(4(a^3+b^3)-(a+b)^3=4(a^3+b^3)-(a^3+3a^2b+3ab^2+b^3)\)

\(=3(a^3+b^3-a^2b-ab^2)\)

\(=3[a^2(a-b)-b^2(a-b)]=3(a^2-b^2)(a-b)=3(a+b)(a-b)^2\)

 

Do \(a+b>0\Rightarrow 3(a+b)(a-b)^2\geq 0\Rightarrow 4(a^3+b^3)-(a+b)^3\geq 0\)

\(\Rightarrow 4(a^3+b^3)\geq (a+b)^3\Leftrightarrow (a+b)^3\leq 8\)

\(\Leftrightarrow a+b\leq 2\)

Ta có đpcm.

 

2 tháng 6 2019

Anh làm cách cosi

\(VT^2=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(b^2+a^2+c^2\right)\)

Ta có \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2b^2\)

       \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2c^2\)=>     \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)

         \(\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge2c^2\)

=> \(VT^2\ge3\left(a^2+b^2+c^2\right)=9\)

=> \(VT\ge3\)

Dấu bằng xảy ra khi a=b=c1

2 tháng 6 2019

xD

Có: \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge3\)(1)

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(a^2+b^2+c^2\right)\ge9\)

\(\Leftrightarrow\frac{\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3a^2b^2c^2}{a^2b^2c^2}\ge0\)

Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)

\(\left(1\right)\Leftrightarrow\frac{x^3+y^3+z^3-3xyz}{\left(abc\right)^2}\ge0\)

\(\Leftrightarrow\frac{\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]}{\left(abc\right)^2}\ge0\)(đúng)

Vậy ........... dấu = xảy ra khi và chỉ khi x=y=z hay a=b=c=1

12 tháng 6 2017

Giả sử a + b > 2

<=> a > 2 - b 

<=> a^3 > (2 - b)^3

<=> a^3 > 8 - 12b + 6b^2 - b^3

<=> a^3 + b^3 > 8 - 12b + 6b^2

<=> 2 > 8 - 12b + 6b^2

<=> 0 > 8 - 2 -12b + 6b^2

<=> 0 > 6 + 6b^2 -12b

<=> 0 > 1 - 2b + b^2 ( vô lí )

 Vậy a + b \(\le\)2 ( dấu bằng xảy ra khi a=b=1)

24 tháng 6 2020

Bổ dung thêm \(ab^2+bc^2+ca^2=3\)

Áp dụng BĐT Cauchy ba số:

\(\left(a+7\right)+8+8\ge3\sqrt[3]{\left(a+7\right)8\cdot8}=12\sqrt[3]{a+7}\)

\(\Rightarrow\sqrt[3]{a+7}\le\frac{a+23}{12}\)

Tương tự ta có: \(\hept{\begin{cases}\sqrt[3]{b+7}\le\frac{b+23}{12}\\\sqrt[3]{c+7}\le\frac{c+23}{12}\end{cases}}\)

Cộng các BĐT trên ta nhận được:

\(\sqrt[3]{a+7}+\sqrt[3]{b+7}+\sqrt[3]{c+7}\le\frac{a+b+c+69}{12}\)

Áp dụng BĐT Cauchy 4 số:

\(a\le\frac{a^4+1+1+1}{4}=\frac{a^4+3}{4};b\le\frac{b^4+3}{4};c\le\frac{c^4+3}{4}\)

\(\Rightarrow\frac{a+b+c+69}{12}\le\frac{\frac{a^4+3}{4}+\frac{b^4+3}{4}+\frac{c^4+3}{4}+69}{12}=\frac{a^4+b^4+c^4+285}{48}\)

Ta chứng minh \(\frac{a^4+b^4+c^4+285}{48}\le2\left(a^4+b^4+c^4\right)\)

Áp dụng BĐT Cauchy 4 số: \(\hept{\begin{cases}a^4+b^4+b^4+1\ge4ab\\b^4+c^4+c^4+1\ge4bc^2\\c^4+a^4+a^4+1\ge4ca^2\end{cases}}\)

Cộng các BĐT trên ta thu được \(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=12\)

\(\Leftrightarrow a^4+b^4+c^4\ge3\)

=> đpcm