K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2015

ĐÂY MÀ LÀ TOÁN 9 À EN LỚP 7 CÒN GIẢI ĐƯỢC

21 tháng 5 2017

Câu hỏi của Nguyễn Hoàng Kiều Trinh - Toán lớp 9 - Học toán với OnlineMath

NV
3 tháng 7 2020

\(-2\le a\le3\Rightarrow\left(a+2\right)\left(a-3\right)\le0\)

\(\Leftrightarrow a^2-a-6\le0\Rightarrow a\ge a^2-6\)

Tương tự ta có: \(b\ge b^2-6\) ; \(c\ge c^2-6\)

\(\Rightarrow a+b+c\ge a^2+b^2+c^2-18=4\)

\(P_{min}=4\) khi \(\left(a;b;c\right)=\left(3;3;-2\right)\) và hoán vị

22 tháng 5 2015

Ta có :\(-2\le a\le3\Rightarrow a+2\ge0\) và \(a-3\le0\)\(\Rightarrow\left(a+2\right)\left(a-3\right)\le0\Rightarrow a^2-a-6\le0\Rightarrow a\ge a^2-6\)

Cmtt ta cũng có : \(b\ge b^2-6\) ; \(c\ge c^2-6\)

Cộng từng vế 3 bất đẳng thức trên ta đc : \(a+b+c\ge a^2+b^2+c^2-18=4\)

Dấu = xảy ra <=> (a ; b ; c) = (-2;3;3) ; (3;-2;3) ; (3;3;-2)

\(A=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)

\(=a^2+b^2+\frac{b^2+a^2}{a^2b^2}\ge0\)

\(MinA=0\Leftrightarrow\hept{\begin{cases}a^2=0\\b^2=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)

2 tháng 9 2016

bạn lm sai rồi