Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sin^2\alpha+\cos^2\alpha=1\)
\(\Rightarrow\sin^2\alpha+\left(\frac{7}{5}-\sin\alpha\right)^2=1\)
\(\Rightarrow25\sin^2\alpha-35\sin\alpha+12=0\)
\(\Rightarrow\left(5\sin\alpha-4\right)\left(5\sin\alpha-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sin\alpha=\frac{4}{5}\\\sin\alpha=\frac{3}{5}\end{cases}}\)
Nếu \(\sin\alpha=\frac{4}{5}\)thì \(\cos\alpha=\frac{3}{5}\Rightarrow\tan\alpha=\frac{4}{3}\)
Nếu \(\sin\alpha=\frac{3}{5}\)thì \(\cos\alpha=\frac{4}{5}\Rightarrow\tan\alpha=\frac{3}{4}\)
Tk cho mk bạn nhá
Mn trả lời nhanh nhanh giùm em với ạ. Em đang cần gấp...
- Ta có: \(\sin\alpha+\cos\alpha=\frac{7}{5}\)
\(\Rightarrow\sin\alpha=\frac{7}{5}-\cos\alpha\)
- Theo tỉ số lượng giác của óc nhọn, ta có:
\(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\left(\frac{7}{5}-\cos\alpha\right)^2+\cos^2\alpha=1\)
\(\Leftrightarrow\frac{49}{25}-\frac{14}{5}\cos\alpha+\cos^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow50\cos^2\alpha-70\cos\alpha+48=0\)
\(\Leftrightarrow25\cos^2\alpha-35\cos\alpha+24=0\)
\(\Leftrightarrow\left(5\cos\alpha-4\right)\left(5\cos\alpha-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5\cos\alpha-4=0\\5\cos\alpha-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\cos\alpha=\frac{4}{5}\\\cos\alpha=\frac{3}{5}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\sin\alpha=\frac{7}{5}-\cos\alpha=\frac{7}{5}-\frac{4}{5}=\frac{3}{5}\\\sin\alpha=\frac{7}{5}-\cos\alpha=\frac{7}{5}-\frac{3}{5}=\frac{4}{5}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}\end{cases}}\)
Kết luận: Vậy..........
a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(\frac{1}{3}\)= \(\frac{\sin\alpha}{\cos\alpha}\)
\(\cos\alpha\)= 3 \(\sin\alpha\)
ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)= \(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)= \(\frac{4\sin\alpha}{2\sin\alpha}\)= \(2\)
#mã mã#
a) Áp dụng tính chất của tỉ số lượng giác ta có:
+) Sin2α + Cos2α=1
hay \(\left(\dfrac{1}{3}\right)^2\)+Cos2α=1
\(\dfrac{1}{9}\)+Cos2α=1
Cos2α=\(\dfrac{8}{9}\)
⇒Cos α=\(\sqrt{\dfrac{8}{9}}\)=\(\dfrac{2\sqrt{2}}{3}\)
+) \(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{\dfrac{1}{3}}{\dfrac{2\sqrt{2}}{3}}=\dfrac{\sqrt{2}}{4}\)
+)\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{\dfrac{2\sqrt{2}}{3}}{\dfrac{1}{3}}\)=\(2\sqrt{2}\)
( sin a + cos a )^2 = (7/5)^2
=> sin^2 a + cos^2a + 2.sina . cos a = 49/25
=> 1 + 2.sin a . cos a = 49/25
=> 2.sin a + cos a = 49/25 - 1 = 24 / 25
( sin a - cos a )^2 = sin ^2 a + cos ^2a - 2. sin a . cos a = 1 - 24/25 = 1/25
=> sin a - cos a = 1/5 (2)
TA có sina + cos a = 7/5 (1)
Từ (1) và (1) => 2 sina = 8/5 => sin a = 8/5 : 2 = 8/10 = 4/5
=> cos a = sin a - 1/5 = 4/5 - 1/5 = 3/5
tan a = \(\frac{sina}{cosa}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{5}\cdot\frac{5}{3}=\frac{4}{3}\)