Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{-1}{3}< \frac{x}{24}< \frac{-1}{4}\)
=>\(\frac{-8}{24}< \frac{x}{24}< \frac{-6}{24}\)
=>x=-7
Vậy x=-7
b)Bn làm tương tự nha
Chúc bn học tốt
\(\Rightarrow\frac{10}{20}< \frac{a}{b}< \frac{12}{20}\)
\(\frac{a}{b}=\frac{11}{20}\)
Nếu muốn tìm nhiều a/b hơn nữa thì tăng MSC của 1/2 và 3/5 lên
\(\frac{2}{7}< \frac{x}{3}< \frac{11}{4};x\inℕ\)
=>\(\frac{12.2}{84}< \frac{28x}{84}< \frac{11.21}{84}\)
=>\(\frac{24}{84}< \frac{28x}{84}< \frac{231}{84}\)
=>24<28x<231
=>28x\(\in\){25;26;27;28;.............................;230}
=>Các số chia hết cho 28 là:28;56;84;112;140;168;196;224
=>x (thỏa mãn)\(\in\){1;2;3;4;5;6;7;8}
Vậy x\(\in\) {1;2;3;4;5;6;7;8}
\(\left(4,5m-\frac{3}{4}.5\frac{1}{3}\right).\frac{1}{12}+\frac{1}{2}x=1\frac{1}{2}\)
\(\left(4,5m-\frac{3}{4}.\frac{16}{3}\right).\frac{1}{2}.\frac{1}{6}+\frac{1}{2}x=\frac{3}{2}\)
\(\left(4,5m-\frac{48}{12}\right).\frac{1}{2}.\left(\frac{1}{6}+x\right)=\frac{3}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}:\frac{1}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}.\frac{2}{1}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{6}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=3\)
=>3\(⋮\)\(\frac{1}{6}+x\)
=>\(\frac{1}{6}+x\)\(\in\)Ư(3)={\(\pm\)1;\(\pm\)3}
Ta có bảng:
\(\frac{1}{6}+x\) | -1 | 1 | -3 | 3 |
x | \(-1\frac{1}{6}\) | \(1\frac{1}{6}\) | \(-3\frac{1}{6}\) | 3\(\frac{1}{6}\) |
Vậy x\(\in\){\(-1\frac{1}{6}\);\(1\frac{1}{6}\);\(-3\frac{1}{6}\);\(\frac{1}{6}\)}
Chúc bn học tốt
\(\frac{b}{a}>1\Leftrightarrow b>a\)(luôn đúng với 0<a<5<b)
Vậy \(\frac{b}{a}>1\)
TA CÓ: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\left(1\right)\)
TA LUÔN CÓ: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
TỪ (1) VÀ (2) => \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
VẬY TA CÓ ĐPCM.
Cho \(B=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Cm B>1
Ta có \(\frac{a}{a+b+c}< \frac{a}{a+b}\)(vì phân số cùng tử thì mẫu số nào lớn hơn thì phân số đó bé hơn)
CM tương tự ta có\(\frac{b}{a+b+c}< \frac{b}{b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{c+a}\)
Cộng vế theo vế ta có \(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
1 < B
CM B<2
Ta có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)( Vì ta có công thức \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}\)
Cm tương tự như phần trên rồi cộng vế theo vế ta có B<2
Cách 1: Nếu bạn đã học các hằng đẳng thức đáng nhớ.
\(\frac{a}{b}+\frac{b}{a}\)\(=\frac{a^2+b^2}{ab}\)
\(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\)
Vì a,b > 0 nên \(\frac{\left(a-b\right)^2}{ab}>0\)
hay \(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(>0\)
=>\(\frac{a^2+b^2}{ab}>2\)
=>\(\frac{a}{b}+\frac{b}{a}>2\)
Cách 2: nếu bạn đã học bất đẳng thức cô-si:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}\ge2\sqrt{1}>2\)(theo bất đẳng thức cô-si)
đạt ơi tớ cũng vừa gửi giống cậu
vì 0 < a < 5 < b; a, b
=> a < b
Vì phân số \(\frac{b}{a}\) có tử lớn hơn mẫu
=>b/a > 1