Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)
\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)
Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:
Với \(n=4k\left(2k\right)!\) thì:
\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)
\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)
\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.
a) Giả sử \(x+y\) là số nguyên tố
Ta có : \(x^3-y^3⋮x+y\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)⋮x+y\)
\(\Rightarrow x^2+xy+y^2⋮x+y\) ( Do \(x-y< x+y,\left(x-y,x+y\right)=1\) vì \(x+y\) là số nguyên tố )
\(\Rightarrow x^2⋮x+y\) ( Do \(xy+y^2=y\left(x+y\right)⋮x+y\) )
\(\Rightarrow x⋮x+y\) (1)
Mặt khác \(x< x+y,x+y\) là số nguyên tố
\(\Rightarrow x⋮̸x+y\) mâu thuẫn với (1)
Do đó, điều giả sử sai.
Vậy ta có điều phải chứng minh.
P(x) = ax5 + by4 + cz3 + dt2 + e (với x;y;z;g;e là 7 số tự nhiên liên tiếp và a;b;c;d là các hệ số nguyên)
Từ điều kiện c) ta có :
- Nếu số k đó là y hoặc t thì y = t = 0. Loại trường hợp này vì e là số tự nhiên mà e < t = 0
- Nếu số k đó là x; z hoặc e :
- Với k là x ta có ax5 + by4 + cz3 + dt2 + e = 0 => -ax5 = by4 + cz3 + dt2 + e
Dễ thấy by4 + cz3 + dt2 + e > 0 => -ax5 > 0 => .... tìm đc x
Tương tự tìm đc z hoăc e. Thử trong 3 số trên trường hợp nào thỏa mãn điều kiện b là ra.
Gỉa sử tồn tại k để 2k + 3k là số chính phương
Nếu \(k=4t\) ( t thuộc N*)
thì: \(2^k+3^k=2^{4t}+3^{4t}=16^t+81^t\) có tận cùng là 7 (mâu thuẫn, do số chính phương ko tận cùng = 7)
Nếu \(k=4t+1\) ( t thuộc N*)
thì \(2^k+3^k=2^{4t+1}+3^{4t+1}=16^t.2+81^t.3\) chia 3 dư 2 (mâu thuẫn, do số chính phương chia 3 chỉ có thể dư 0 or 1)
Nếu \(k=4t+2\) ( t thuộc N*)
thì \(2^k+3^k=2^{4t+2}+3^{4t+2}=16^t.4+81^t.9\) có tận cùng là 3 (mâu thuẫn,.....)
Nếu \(k=4t+3\) ( t thuộc N*)
thì \(2^k+3^k=2^{4t+3}+3^{4t+3}=16^t.8+81^t.27\) chia 3 dư 2 (mâu thuẫn,....)
Vậy không tồn tại k để 2k + 3k là số chính phương
Em mới hc lớp 7 ko biết đúng ko
Giả sử: \(2^k+3^k=n^2\)(tức là số chính phương)
Ta có:
\(2^k\equiv2\)(mod 0) và \(3^k\equiv3\)(mod 0)
Suy ra: \(2^k+3^k\equiv5\)(mod 0)
Suy ra: \(n^2\equiv5\)(mod 0)
Mà 5 chia 3 dư 2
Suy ra: \(n^2\)chia 3 dư 2
Sử dụng bổ đề số chính phương chia 3 không thể dư 2
Suy ra: Phản chứng
Vậy không tồn tại ........
họ và tên nha tên thật cấm nói giả
cho mình hỏi bạn tên gì