K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2015

họ và tên nha tên thật cấm nói giả

22 tháng 1 2016

cho mình hỏi bạn tên gì

2 tháng 4 2018

  zdvdz

20 tháng 9 2016

Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)

\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)

Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:

Với \(n=4k\left(2k\right)!\) thì:

\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)

\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)

\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.

20 tháng 9 2016

Viết rõ đề ra đc không?

28 tháng 2 2020

a) Giả sử \(x+y\) là số nguyên tố

Ta có : \(x^3-y^3⋮x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)⋮x+y\)

\(\Rightarrow x^2+xy+y^2⋮x+y\) ( Do \(x-y< x+y,\left(x-y,x+y\right)=1\) vì \(x+y\) là số nguyên tố )

\(\Rightarrow x^2⋮x+y\) ( Do \(xy+y^2=y\left(x+y\right)⋮x+y\) )

\(\Rightarrow x⋮x+y\) (1)

Mặt khác \(x< x+y,x+y\) là số nguyên tố

\(\Rightarrow x⋮̸x+y\) mâu thuẫn với (1)

Do đó, điều giả sử sai.

Vậy ta có điều phải chứng minh.

28 tháng 2 2020

Bạn thì nhanh nhờ

Del rep cho

16 tháng 7 2016

P(x) = ax5 + by4 + cz3 + dt2 + e (với x;y;z;g;e là 7 số tự nhiên liên tiếp và a;b;c;d là các hệ số nguyên)

Từ điều kiện c) ta có :

- Nếu số k đó là y hoặc t thì y = t = 0. Loại trường hợp này vì e là số tự nhiên mà e < t = 0

- Nếu số k đó là x; z hoặc e :

- Với k là x ta có ax5 + by4 + cz3 + dt2 + e = 0   =>  -ax5 =  by4 + cz3 + dt2 + e

Dễ thấy by4 + cz3 + dt2 + e > 0  =>  -ax5 > 0 => .... tìm đc x

Tương tự tìm đc z hoăc e. Thử trong 3 số trên trường hợp nào thỏa mãn điều kiện b là ra.

Nhờ Kiệt giúp kìa

1 tháng 5 2018

Gỉa sử tồn tại k để 2k + 3k là số chính phương

     Nếu  \(k=4t\)  ( t thuộc N*)

thì:   \(2^k+3^k=2^{4t}+3^{4t}=16^t+81^t\) có tận cùng là 7   (mâu thuẫn, do số chính phương ko tận cùng = 7)

     Nếu  \(k=4t+1\)  ( t thuộc N*)

thì    \(2^k+3^k=2^{4t+1}+3^{4t+1}=16^t.2+81^t.3\) chia 3 dư 2 (mâu thuẫn, do số chính phương chia 3 chỉ có thể dư 0 or 1)

      Nếu  \(k=4t+2\) ( t thuộc N*)

thì  \(2^k+3^k=2^{4t+2}+3^{4t+2}=16^t.4+81^t.9\) có tận cùng là 3 (mâu thuẫn,.....)

      Nếu  \(k=4t+3\) ( t thuộc N*)

thì  \(2^k+3^k=2^{4t+3}+3^{4t+3}=16^t.8+81^t.27\) chia 3 dư 2 (mâu thuẫn,....)

Vậy không tồn tại k để  2k + 3k là số chính phương

1 tháng 5 2018

Em mới hc lớp 7 ko biết đúng ko

Giả sử: \(2^k+3^k=n^2\)(tức là số chính phương)

Ta có:

 \(2^k\equiv2\)(mod 0) và \(3^k\equiv3\)(mod 0)

Suy ra: \(2^k+3^k\equiv5\)(mod 0)

Suy ra: \(n^2\equiv5\)(mod 0)

Mà 5 chia 3 dư 2

Suy ra: \(n^2\)chia 3 dư 2

Sử dụng bổ đề số chính phương chia 3 không thể dư 2

Suy ra: Phản chứng 

Vậy không tồn tại ........