K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

Gỉa sử tồn tại k để 2k + 3k là số chính phương

     Nếu  \(k=4t\)  ( t thuộc N*)

thì:   \(2^k+3^k=2^{4t}+3^{4t}=16^t+81^t\) có tận cùng là 7   (mâu thuẫn, do số chính phương ko tận cùng = 7)

     Nếu  \(k=4t+1\)  ( t thuộc N*)

thì    \(2^k+3^k=2^{4t+1}+3^{4t+1}=16^t.2+81^t.3\) chia 3 dư 2 (mâu thuẫn, do số chính phương chia 3 chỉ có thể dư 0 or 1)

      Nếu  \(k=4t+2\) ( t thuộc N*)

thì  \(2^k+3^k=2^{4t+2}+3^{4t+2}=16^t.4+81^t.9\) có tận cùng là 3 (mâu thuẫn,.....)

      Nếu  \(k=4t+3\) ( t thuộc N*)

thì  \(2^k+3^k=2^{4t+3}+3^{4t+3}=16^t.8+81^t.27\) chia 3 dư 2 (mâu thuẫn,....)

Vậy không tồn tại k để  2k + 3k là số chính phương

1 tháng 5 2018

Em mới hc lớp 7 ko biết đúng ko

Giả sử: \(2^k+3^k=n^2\)(tức là số chính phương)

Ta có:

 \(2^k\equiv2\)(mod 0) và \(3^k\equiv3\)(mod 0)

Suy ra: \(2^k+3^k\equiv5\)(mod 0)

Suy ra: \(n^2\equiv5\)(mod 0)

Mà 5 chia 3 dư 2

Suy ra: \(n^2\)chia 3 dư 2

Sử dụng bổ đề số chính phương chia 3 không thể dư 2

Suy ra: Phản chứng 

Vậy không tồn tại ........

23 tháng 9 2016

Không có đâu chị ạ

23 tháng 9 2016

có 

thay a=100..0000{63chu so 0}

ta co

a mu 40 < k > a mu 40 .a

vay khoang cach la 10....000  co 63 chu so 0

suy ra k=100...000 co 62 chu so 0

31 tháng 3 2018

Không

31 tháng 3 2018
  • Bổ đề 1: Số chính phương không thể có tận cùng là 2; 3; 7; 8.
  • Bổ đề 2: Số chính phương chia cho 3 không thể có số dư là 2. (Tự chứng minh 2 bổ đề trên)

Giả sử tồn tại kϵN sao cho 2k+3k là số chính phương.

Đặt k=4t+r với \(a\in N,b\in0,1,2,3\) (0,1,2,3 chỉ là các số đại diện trên tính chẵn lẻ và 0) thì số đang xét có dạng:

\(A=2^k+3^k=2^{4a+b}+3^{4a+b}=16^a.2^b+81^a.3^b\)

Xét 4 trường hợp sau:

  • TH1:Với b=0 thì A có tận cùng là 7, trái với bổ đề 1.
  • TH2:Với b=2 thì A có tận cùng là 3, trái với bổ đề 1.
  • TH3: Với b=1 thì A chia cho 3 dư 2, trái với bổ đề 2.
  • TH4: Với b=3 thì A chia cho 3 dư 2, trái với bổ đề 2.

Vậy không tồn tại số nguyên dương k nào để số A là số chính phương

19 tháng 7 2021

Do x;y có vai trò tương đương nhau nên ko giảm tính tổng quát của bài toán, ta giả sử:x>= y
Suy ra: x^2<x^2+y=<x^2+x<(x+1)^2 mà x;y nguyên dương => x^2+y không phải là scp.
        Vậy không tồn tại 2 số x;y sao cho x^2+y; y^2+x

8 tháng 7 2017

làm đc mấy bài rồi mày

8 tháng 7 2017

đứa nào đấy?