K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

Tham khảo tại đây nhé : Câu hỏi của Mai Phương - Toán lớp 8 - Học toán với OnlineMath

17 tháng 11 2018

vì a ko chia  hết cho 2,3

=> a=6m-1( m thuộc N)

\(P=4.\left(6m-1\right)^2+3.\left(6m-1\right)+5\)

\(P=144m^2-48m+4+18m-3+5=144m^2-48m+18m+6\)

\(P=6.\left(24m^2-5m+1\right)⋮6\)

=> đpcm

29 tháng 11 2022

Nếu a ko chia hết cho 2 và 3 thì a=6k+1 hoặc a=6k+5

Khi a=6k+1 thì f(x)=4(6k+1)^2+3(6k+1)+5

=4(36k^2+12k+1)+18k+8

=144k^2+48k+4+18k+8

=144k^2+66k+12

=6(24k^2+11k+2) chia hết cho 6

Nếu a=6k+5 thì 

f(a)=4(6k+5)^2+3(6k+5)+5

=4(36k^2+60k+25)+18k+20

=144k^2+240k+100+18k+20

=6(24k^2+43k+20) chia hết cho 6

1 tháng 10 2019

Áp dụng công thức:  (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)

Ta có : f(x)=ax2- bx + c

=> Tính chất: f (m) – f(n) chia hết ( m – n)

Ta có:

 f(104) – f(9) chia hết 105

=> f(104) – f(9) chia hết 5

=> f(104) chia hết 5

Mặt khác:

f(104) – f(5) chia hết 99

=> f(104) – f(5) chia hết 9

=> f(104) chia hết 9

Vậy f(104) chia hết (5.9) = 45 

7 tháng 3 2021

Do vai trò bình đẳng của x, y, z trong phương trình,

trước hết ta xét x ≤ y ≤ z.

Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z

=> xyz = x + y + z ≤ 3z => xy ≤ 3=> xy thuộc {1 ; 2 ; 3}.

Nếu xy = 1 => x = y = 1,

thay vào (2) ta có : 2 + z = z, vô lí.

Nếu xy = 2, do x ≤ y nên x = 1 và y = 2,

thay vào (2), => z = 3.Nếu xy = 3,

do x ≤ y nên x = 1 và y = 3,

thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)

7 tháng 3 2021

phần kia thì chịu :)

28 tháng 1 2018

Nhận xét : số chính phương chia 3 dư 0 hoặc 1

+, Nếu a^2 và b^2 đều chia 3 dư 1 => a^2+b^2 chia 3 dư 2

+, Nếu trong 2 số a^2 và b^2 có 1 số chia hết cho 3 và 1 số chia 3 dư 1 => a^2+b^2 chia 3 dư 1

=> để a^2+b^2 chia hết cho 3 thì a^2 và b^2 đều chia hết cho 3

Mà 3 là số nguyên tố nên  a và b đều chia hết cho 3

Tk mk nha

28 tháng 1 2018

Câu hỏi của Phương Đặng - Toán lớp 8 - Học toán với OnlineMath