K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

chia cho mấy mới làm chớ

9 tháng 1 2016

phân tích số 26=13.2

ghép 3 số hạng ta được:3(1+3+9)+3^4(1+3+9)+...+3^2012(1+3+9)

                                   =3.13+3^4.13+...+^2012.13

                                   =13(3+3^4+...+3^2012)

vậy dãy số đó chia hết cho 13.

ghép 2 số hạng ta được:3(1+3)+3^3(1+3)+...+3^2015(3+1)

                                  =3.4+3^3.4+...+3^2015.4

                                  =4(3+3^3+...+3^2015)

 vậy dãy số đó chia hết cho 2.

vì dãy số đó chia hết cho cả 2 và 13.

vậy dãy số đó chia hết cho 26.

 

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)

10 tháng 1 2016

ta có: S=( 31+32+33+34+35+36)+...+32016

S= 31(1+3+32+33+34+35) +...+ 32011(1+3+32+33+34+35)

S= 31.364+...+ 32011.364

S= 364. ( 31+...+32011 )

S= 26.14.(31+...+32011) chia hết cho 26

vậy S chia hết cho 26

10 tháng 1 2016

3+32+33+...............+32016

=(3+32+33+34+35+36)+.............+(32011+32012+32013+32014+32015+32016)

=3.(1+3+32+33+34+35)+...........+32011.(1+3+32+33+34+35)

=3.364+.................+32011.364

=3.14.26+...............+32011.14.26 chia hết cho 26

=>đpcm

31 tháng 12 2015

\(S=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)

\(=\left(1+3+9+27\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{2012}.\left(1+3+3^2+3^3\right)\)

\(=40+3^4.40+...+3^{2012}.40\)

\(=40.\left(1+3^4+...+3^{2012}\right)\)

\(=10.4.\left(1+3^4+...+3^{2012}\right)\text{ chia hết cho 10}\)

=> S chia hết cho 10 (đpcm).

31 tháng 12 2015

chtt

1 tháng 1 2016

S = 1 + 3 + 32 + .......... + 32008 + 32009

= ( 1 + 3 ) + ( 32 + 33 ) + ............. + ( 32008 + 32009 )

= 4 + 32( 1 + 3 ) + ............ + 32008( 1 + 3 )

= 4 + 4 . 32 + .......... + 4 . 32008

= 4( 1 + 32 +......... + 32008 ) chia hết cho 4

KL:......

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

30 tháng 6 2016

B = (1 + 3) + (32+33)+.....+(389+390)

  = 4 + 32 .(1 + 3) + .....+390.(1+3)

 = 1 .4 + 32.4 + ..... +390.4

= 4.(1 + 32 + .... +390) chia hết cho 4

6 tháng 9 2018

\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)

\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)

\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)