K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

S=3^0+3^2+3^4+3^6+...+3^2002

=1+3^2+3^4+3^6+...+3^2002

9S=3^2+3^4+3^6+3^8+...+3^2004

9S-S=3^2+3^4+3^6+3^8+...+3^2004-1-3^2-3^4-3^6-...-3^2002

8S=3^2004-1

S=(3^2004-1):8

 

S=3^0+3^2+3^4+3^6+...+3^2002

=1+3^2+3^4+3^6+...+3^2002

=(1+3^2+3^4)+(3^6+3^8+3^10)+...+(3^1998+3^2000+3^2002)

=91+3^6(1+3^2+3^4)+...+3^1998(1+3^2+3^4)

91(1+3^6+...+3^1998)

ma 91 chia het cho 7

=> 91(1+3^6+...+3^1998) chia het cho 7

vay S chia het cho 7

17 tháng 12 2015

chtt 

các bạn tick mình cho tròn 220 điểm hỏi đáp với

23 tháng 1 2017

S = 30 + 32 + 34 + .... + 32002

9S = 32 + 34 + .... + 32002 + 32004

9S - S = (32 + 34 + .... + 32002 + 32004) - (30 + 32 + 34 + .... + 32002)

8S = 32004 - 30

S = \(\frac{3^{2004}-1}{8}\)

20 tháng 5 2017

Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)

Ta thấy :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\)

\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

Nhân xét :

\(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};\)

\(...;\dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}+...+\)

\(\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{100}\)

\(\Rightarrow A< \dfrac{99}{100}\)

\(A< \dfrac{99}{100}< 1\)

\(\Rightarrow A< 1\)

20 tháng 5 2017

Bài 1)

Đặt \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)
Ta thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4};....;\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\)\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{100}\) < 1 \(\Rightarrow\) A < 1

Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)< 1

24 tháng 10 2015

góp lại 2 số đầu là ra 

tick nhé bạn thân

24 tháng 10 2015

S=(3^1+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2000+3^2001+3^2002)

S=3.(1+3+3^2)+3^4.(1+3+3^2)+...+3^2000.(1+3+3^2)

S=3.14+3^4.14+...+3^2000.14

S=(3+3^4+...+3^2000).14

=> S chia hết cho 7

21 tháng 2 2015

a)nhân S với 32 ta dc:

9S=3^2+3^4+...+3^2002+3^2004

=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)

=>8S=32004-1

=>S=32004-1/8

b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7

ta có:32004-1=(36)334-1=(36-1).M=7.104.M

=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7

 

29 tháng 4 2016

S chia het cho 7

\(s=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+.......+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=\left(3^0+3^2+3^4\right)\left(1+3^6+....+3^{1998}\right)\)

\(=91\left(1+3^6+...+3^{1998}\right)\)

Vì 91 chia hết cho 7

=> S chia hết cho 7 ( đpcm )

Ai t mik thì nói nha mik sẽ T lại

24 tháng 6 2016

s chia het cho 7

15 tháng 12 2016

 

a, \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

\(\Rightarrow9S=3^2+3^4+3^6+3^8+...+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\Rightarrow S=\frac{3^{2004}-1}{8}\)

b, Xét dãy số mũ : 0;2;4;6;...;2002

Số số hạng của dãy số trên là :

( 2002 - 0 ) : 2 + 1 = 1002 ( số )

Ta ghép được số nhóm là :

1002 : 3 = 334 ( nhóm )

Ta có : \(S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

\(S=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(S=1.91+3^6.91+...+3^{1998}.91=\left(1+3^6+...+3^{1998}\right).91\)

Vì : \(91⋮7;1+3^6+...+3^{1998}\in N\Rightarrow S⋮7\) (đpcm)

16 tháng 12 2016

CẢM ƠN