K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Hỏi đáp Toán

= \(49-\left(\dfrac{1}{2}-\dfrac{1}{51}\right)=\dfrac{4949}{102}\notin N\)

Vậy \(S\notin N\)

29 tháng 7 2017

\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1\)\(S=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\)

\(\Rightarrow S=1-\dfrac{1}{4}+1-\dfrac{1}{9}+1-\dfrac{1}{16}+...+1-\dfrac{1}{2500}\)

\(\Rightarrow S=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{50^2}\)

\(\Rightarrow S=\left(1+1+...+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)

Từ 2-50 có 49 số nên có 49 số 1

\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)< 49\)

Nhận xét: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{50^2}< \dfrac{1}{49.50}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...-\dfrac{1}{50}=1-\dfrac{1}{50}< 1\)

\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)>-1\)

\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1\)

\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>48\) (2)

Từ (1) và (2) \(\Rightarrow48< S< 49\)

Vậy \(S\notin N\)

2 tháng 4 2017

\(B=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+\dfrac{24}{25}+...+\dfrac{2499}{2500}\)

\(=1-\dfrac{3}{4}+1-\dfrac{8}{9}+1-\dfrac{15}{16}+1-\dfrac{24}{25}...+1-\dfrac{2499}{2500}\)

\(=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{25}+...+\dfrac{1}{2500}\right)\)

Lại có: \(49-\left(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+...+\dfrac{1}{50.50}\right)< 49-\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{50.51}\right)\)

\(49-\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{50.51}\right)\)

\(=49-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\)

\(=49-\left(\dfrac{1}{2}-\dfrac{1}{51}\right)=\dfrac{4942}{102}\) \(\notin Z\)

Vậy B không phải là số nguyên

1 tháng 3 2018

\(S_n=1-\dfrac{1}{n^2}\) xét tổng \(U_n=\dfrac{1}{n^2}\) với n >=2

cơ bản có \(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}=\dfrac{1}{n-1}-\dfrac{1}{n}\)

<=>\(U< 1-\dfrac{1}{n-1}\)

cơ bản có \(\dfrac{1}{n^2}>\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)

<=>\(U>1-\dfrac{1}{n+1}\)

<=>\(1-\dfrac{1}{n-1}< U< 1-\dfrac{1}{n+1}\)

với n >2 => 1/(n-1) ; 1/(n+1) là hai phân số <1

=> U không phải là số nguyên

=> S không là số nguyên => dpcm

1 tháng 3 2018

vế phải đâu

4 tháng 1 2019

Theo bài ra, ta có:

\(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\)

\(\Rightarrow S=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)+\left(\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}\right)+\left(\dfrac{1}{15}+\dfrac{1}{16}\right)\)

\(\Rightarrow S< \left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{6}.3+\dfrac{1}{9}.3+\dfrac{1}{12}.3+\dfrac{1}{15}.3\)

\(\Rightarrow S< \left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\)

\(\Rightarrow S< 2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)\)

\(\Rightarrow S< 2\left[\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)\right]\)

\(\Rightarrow S< 2\left(\dfrac{2}{2}+\dfrac{2}{4}\right)\)

\(\Rightarrow S< 2\left(\dfrac{2}{2}+\dfrac{1}{2}\right)\)

\(\Rightarrow S< 2.\dfrac{3}{2}\)

\(\Rightarrow S< 3\left(1\right)\)

Lại có: \(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\)

\(\Rightarrow S=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}\right)\)

\(\Rightarrow S>\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{8}.4+\dfrac{1}{12}.4+\dfrac{1}{16}.4\)

\(\Rightarrow S>\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)\)

\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{2}{4}\right)\)

\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{2}\right)\)

\(\Rightarrow S>2\)

Từ (1) và (2) suy ra \(2< S< 3\)

⇒ S không phải 1 số nguyên

Vậy...

17 tháng 12 2017

a,\(3\dfrac{17}{24}+\left(2\dfrac{8}{15}-4\dfrac{8}{15}\right):\left(2\dfrac{11}{30}-\dfrac{11}{30}\right)\)

\(=\dfrac{89}{24}-2:2\)

\(=\dfrac{65}{24}\)

b,\(0,5:\sqrt{625}-\sqrt{\dfrac{4}{25}}+0,18.\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right)\)

\(=0,5:25-\dfrac{2}{5}+0,18.\dfrac{1}{2}\)

\(=-\dfrac{29}{100}\)