\(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\) không phải...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

Theo bài ra, ta có:

\(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\)

\(\Rightarrow S=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)+\left(\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}\right)+\left(\dfrac{1}{15}+\dfrac{1}{16}\right)\)

\(\Rightarrow S< \left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{6}.3+\dfrac{1}{9}.3+\dfrac{1}{12}.3+\dfrac{1}{15}.3\)

\(\Rightarrow S< \left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\)

\(\Rightarrow S< 2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)\)

\(\Rightarrow S< 2\left[\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)\right]\)

\(\Rightarrow S< 2\left(\dfrac{2}{2}+\dfrac{2}{4}\right)\)

\(\Rightarrow S< 2\left(\dfrac{2}{2}+\dfrac{1}{2}\right)\)

\(\Rightarrow S< 2.\dfrac{3}{2}\)

\(\Rightarrow S< 3\left(1\right)\)

Lại có: \(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\)

\(\Rightarrow S=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}\right)\)

\(\Rightarrow S>\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{8}.4+\dfrac{1}{12}.4+\dfrac{1}{16}.4\)

\(\Rightarrow S>\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)\)

\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{2}{4}\right)\)

\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{2}\right)\)

\(\Rightarrow S>2\)

Từ (1) và (2) suy ra \(2< S< 3\)

⇒ S không phải 1 số nguyên

Vậy...

30 tháng 3 2017

Ta có 1/2x3<1/2^2<1/1x2;1/3x4<1/3^2<1/2x3;

.......

1/45x46<1/45^2<1/44x45

=>1/2x3+1/3x4+...+1/45x46<1/2^2+1/3^2+...+1/45^2<1/1x2+1/2x3+...+1/44x45

=>1/2-1/46<1/2^2+1/3^2+...+1/45^2<1-1/45

=>11/23<1/2^2+1/3^2+...+1/45^2<44/45

Mà11/23>0;44/45<1

=>0<1/2^2+1/3^2+...+1/45^2<1

Vậy 1/2^2+1/3^2+...+1/45^2 không phải là số nguyên

NV
13 tháng 1 2019

\(S=\dfrac{1}{2018}\left(1+\dfrac{1}{1}+1+\dfrac{1}{2}+1+\dfrac{1}{3}+...+1+\dfrac{1}{2018}\right)\)

\(S=\dfrac{1}{2018}\left(2018+\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)

\(S=1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)

Do \(\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2018}\right)>0\Rightarrow S>1\) (1)

Lại có:

\(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}< \dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}+...+\dfrac{1}{1}=2018\)

\(\Rightarrow1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)< 1+\dfrac{1}{2018}.2018=2\)

\(\Rightarrow S< 2\) (2)

Từ (1), (2) \(\Rightarrow1< S< 2\)

\(\Rightarrow S\) nằm giữa 2 số tự nhiên liên tiếp nên S không phải là số tự nhiên

NV
17 tháng 1 2019

Bạn thấy khó hiểu từ dòng thứ mấy bạn?

25 tháng 8 2017

Bài 2 :

\(S=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+............+\dfrac{2017}{4^{2017}}\)

\(\Leftrightarrow4S=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...........+\dfrac{2017}{4^{2016}}\)

\(\Leftrightarrow4S-S=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+..........+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+..........+\dfrac{2017}{4^{2017}}\right)\)

\(\Leftrightarrow3S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+.........+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2016}}\)

Đặt :

\(A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2016}}\)

\(\Leftrightarrow4A=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2015}}\)

\(\Leftrightarrow4A-A=\left(4+1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2016}}\right)\)

\(\Leftrightarrow3A=4-\dfrac{1}{4^{2016}}\)

\(\Leftrightarrow D=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}\)

\(\Leftrightarrow3S=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}-\dfrac{2017}{4^{2016}}\)

\(\Leftrightarrow3S< \dfrac{4}{3}\)

\(\Leftrightarrow S< \dfrac{4}{9}\)

\(\Leftrightarrow S< \dfrac{1}{2}\rightarrowđpcm\)

26 tháng 8 2017

\(A=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\) ( A cho đẹp :v)

\(4A=4\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)

\(4A=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\)

\(4A-A=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)\(3A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2017}}\)

Đặt:

\(M=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\)

\(4M=4\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)

\(4M=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\)

\(4M-M=\left(4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)\(3M=4-\dfrac{1}{4^{2016}}\)

\(M=\dfrac{4}{3}-\dfrac{1}{4^{2016}}\)

Thay M vào A ta có:

\(A=\dfrac{4}{9}-\dfrac{1}{4^{2016}.3}-\dfrac{2017}{4^{2017}}\)

\(\Rightarrow A< \dfrac{1}{2}\Rightarrowđpcm\)

13 tháng 11 2017

1.

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}-\dfrac{1}{4!}+...+\)\(\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

13 tháng 11 2017

2.

\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\)\(\dfrac{1}{100!}\)

Ta có:

\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+\dfrac{3.4}{4!}-\dfrac{1}{4!}+...+\)\(\dfrac{99.100}{100!}-\dfrac{1}{100}\)

\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+\dfrac{3.4}{4!}+...+\dfrac{99.100}{100!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)

21 tháng 7 2018

Giúp mình với nhé

13 tháng 10 2018

2) Mình nghĩ nên nhỏ hơn 3 thì dễ tính hơn... @@
Ta có :

\(\dfrac{x}{x+y+z}< \dfrac{x}{x+y}< \dfrac{x}{x}\\ \dfrac{y}{x+y+z}< \dfrac{y}{y+z}< \dfrac{y}{y}\\ \dfrac{z}{x+y+z}< \dfrac{z}{z+x}< \dfrac{z}{z}\)

\(\Rightarrow\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x}{x}+\dfrac{y}{y}+\dfrac{z}{z}\\ \Rightarrow\dfrac{x+y+z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 1+1+1\\ \Rightarrow1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 3\)